全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Inkjet-Printed Organic Field-Effect Transistor by Using Composite Semiconductor Material of Carbon Nanoparticles and Poly(3-Hexylthiophene)

DOI: 10.1155/2011/142890

Full-Text   Cite this paper   Add to My Lib

Abstract:

Poly(3-hexylthiophene), P3HT, has been widely used in organic electronics as a semiconductor material. It suffers from the low carrier mobility characteristics. This limits P3HT to be employed in applications. Therefore, the blending semiconductor material, carbon nanoparticle (CNP), and P3HT, are developed and examined by inkjet-printing organic field-effect transistor technology in this work. The effective carrier mobility of fabricated OFETs can be enhanced by 8 folds with adding CNP and using O2 plasma treatment. At the same time, the transconductance of fabricated OFETs is also raised by 5 folds. Based on the observations of SEM, XRD, and FTIR, these improvements are contributed to the local field induced by the formation of CNP/P3HT complexes. This observation presents an insight of the development in organic semiconductor materials. Moreover, this work also offers a low-cost and effective semiconductor material for inkjet-printing technology in the development of organic electronics. 1. Introduction Organic electronics have received tremendous interests due to their potential applications in flexible electronics. Moreover, characteristics of organic electronics including low-cost and low-temperature process also promote the value of this research field. Therefore, various organic electronic devices have been proposed and implemented, such as organic thin film transistors (OTFTs) [1], large-area displays [2], solar cells [3–5], organic light-emitting diodes (OLEDs) [6, 7], radio frequency identification tags (RFIDs) [8], and sensors [9]. Among various fabrication methods to implement these organic electronics, printing technology is emphasized because of its compatibility to large-area fabrications and industrial mass productions. The printing techniques can be achieved by spin coating, roll-to-roll printing, screen printing, gravure printing, and inkjet printing. In these established printing techniques, inkjet-printing is one of the most intriguing techniques. Without any prepatterned process, it can directly deposit ink materials following a designed pattern on substrates in an in-situ manner [10]. Compared with other solution-based printing processes, inkjet printing can reduce the ink material consumption by drop-on-demand design. It also overcomes the traditional contact and pattern-transferring problems. In addition, the high-resolution inkjet-printing techniques have been demonstrated up to 1?μm or less [11, 12]. As a consequence, organic materials with nanowires, nanoparticles, and nanocrystal-polymer composites have been successfully

References

[1]  T. Shimoda, Y. Matsuki, M. Furusawa et al., “Solution-processed silicon films and transistors,” Nature, vol. 440, no. 7085, pp. 783–786, 2006.
[2]  G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal et al., “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature Materials, vol. 3, no. 2, pp. 106–110, 2004.
[3]  S. H. Eom, S. Senthilarasu, P. Uthirakumar et al., “Polymer solar cells based on inkjet-printed PEDOT:PSS layer,” Organic Electronics, vol. 10, no. 3, pp. 536–542, 2009.
[4]  C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Letters, vol. 8, no. 9, pp. 2806–2813, 2008.
[5]  Y. K. Kim, K. Lee, N. E. Coates et al., “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, vol. 317, no. 5835, pp. 222–225, 2007.
[6]  C. D. Müller, A. Falcou, N. Reckefuss et al., “Multi-colour organic light-emitting displays by solution processing,” Nature, vol. 421, no. 6925, pp. 829–833, 2003.
[7]  S. I. Park, Y. J. Xiong, R. H. Kim et al., “Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays,” Science, vol. 325, no. 5943, pp. 977–981, 2009.
[8]  P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, “Pentacene-based radio-frequency identification circuitry,” Applied Physics Letters, vol. 82, no. 22, pp. 3964–3966, 2003.
[9]  B. Crone, A. Dodabalapur, A. Gelperin et al., “Electronic sensing of vapors with organic transistors,” Applied Physics Letters, vol. 78, no. 15, pp. 2229–2231, 2001.
[10]  J. A. Lim, J. H. Kim, L. Qiu et al., “Inkjet-printed single-droplet organic transistors based on semiconductor nanowires embedded in insulating polymers,” Advanced Functional Materials, vol. 20, no. 19, pp. 3292–3297, 2010.
[11]  C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Advanced Materials, vol. 17, no. 8, pp. 997–1001, 2005.
[12]  Y. Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus, “Downscaling of self-aligned, all-printed polymer thin-film transistors,” Nature Nanotechnology, vol. 2, no. 12, pp. 784–789, 2007.
[13]  J. Y. Z. Zhang, Z. Wei, Y. Sum et al., “Inkjet-printed organic electrodes for bottom-contact organic field-effect transistors,” Advanced Functional Materials, vol. 21, no. 4, pp. 786–791, 2011.
[14]  E. Tekin, P. J. Smith, S. Hoeppener et al., “InkJet printing of luminescent CdTe nanocrystal-polymer composites,” Advanced Functional Materials, vol. 17, no. 1, pp. 23–28, 2007.
[15]  Y. D. Park, H. S. Lee, Y. J. Choi et al., “Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors,” Advanced Functional Materials, vol. 19, no. 8, pp. 1200–1206, 2009.
[16]  S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications,” Advanced Functional Materials, vol. 17, no. 16, pp. 3111–3118, 2007.
[17]  H. Sirringhaus, P. J. Brown, R. H. Friend et al., “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, no. 6754, pp. 685–688, 1999.
[18]  F. M. Li, A. Nathan, Y. L. Wu, and B. S. Ong, “A comparative study of plasma-enhanced chemical vapor gate dielectrics for solution-processed polymer thin-film transistor circuit integration,” Journal of Applied Physics, vol. 104, no. 12, Article ID 124504, 2008.
[19]  G. C. Yuan, Z. S. Lu, Z. Xu et al., “Microstructure transformations induced by modified-layers on pentacene polymorphic films and their effect on performance of organic thin-film transistor,” Organic Electronics, vol. 10, no. 7, pp. 1388–1395, 2009.
[20]  L. Jiang, J. Zhang, D. Gamota, and C. G. Takoudis, “Enhancement of the field-effect mobility of solution processed organic thin film transistors by surface modification of the dielectric,” Organic Electronics, vol. 11, no. 2, pp. 344–350, 2010.
[21]  J. Tsukamoto, J. Mata, and T. Matsuno, “Organic field effect transistors using composites of semiconductive polymers and single-walled carbon nanotubes,” Japanese Journal of Applied Physics, vol. 46, no. 17–19, pp. L396–L398, 2007.
[22]  S. H. Liu, S. C. B. Mannsfeld, M. C. Lemieux, H. W. Lee, and Z. N. Bao, “Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios,” Applied Physics Letters, vol. 92, no. 5, Article ID 053306, 2008.
[23]  Y. D. Park, J. A. Lim, J. A. Yunseok et al., “Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors,” Organic Electronics, vol. 9, no. 3, pp. 317–322, 2008.
[24]  Y. J. Song, J. U. Lee, and W. H. Jo, “Multi-walled carbon nanotubes covalently attached with poly(3-hexylthiophene) for enhancement of field-effect mobility of poly(3-hexylthiophene)/multi-walled carbon nanotube composites,” Carbon, vol. 48, no. 2, pp. 389–395, 2010.
[25]  M. W. Lee and C. K. Song, “Oxygen plasma effects on performance of pentacene thin film transistor,” Japanese Journal of Applied Physics, vol. 42, no. 7 A, pp. 4218–4221, 2003.
[26]  B. J. Song, K. Hong, W. K. Kim, K. Kim, S. Kim, and J. L. Lee, “Effect of oxygen plasma treatment on crystal growth mode at pentacene/Ni interface in organic thin-film transistors,” Journal of Physical Chemistry B, vol. 114, no. 46, pp. 14854–14859, 2010.
[27]  M. Bruening, E. Moons, D. Cahen, and A. Shanzer, “Controlling the work function of CdSe by chemisorption of benzoic acid derivatives and chemical etching,” Journal of Physical Chemistry, vol. 99, no. 20, pp. 8368–8373, 1995.
[28]  A. Paskaleva and E. Atanassova, “Bulk oxide charge and slow states in Si-SiO2 structures generated by RIE-mode plasma,” Microelectronics Reliability, vol. 40, no. 12, pp. 2033–2037, 1999.
[29]  Y. D. Park, J. A. Lim, J. A. Yunseok et al., “Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors,” Organic Electronics, vol. 9, no. 3, pp. 317–322, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133