全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient Protocols for Principal Eigenvector Computation over Private Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we present a protocol for computing the principal eigenvector of a collection of data matrices belonging to multiple semi-honest parties with privacy constraints. Our proposed protocol is based on secure multi-party computation with a semi-honest arbitrator who deals with data encrypted by the other parties using an additive homomorphic cryptosystem. We augment the protocol with randomization and oblivious transfer to make it difficult for any party to estimate properties of the data belonging to other parties from the intermediate steps. The previous approaches towards this problem were based on expensive QR decomposition of correlation matrices, we present an efficient algorithm using the power iteration method. We present an analysis of the correctness, security, and efficiency of protocol along with experimental results using a prototype implementation over simulated data and USPS handwritten digits dataset.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133