全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1D nonnegative Schrodinger operators with point interactions

Keywords: point interaction , Riesz basis , boundary triplet , the Friedrichs extension , the Krein extension

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $Y$ be an infinite discrete set of points in $dR$,satisfying the condition $inf{|y-y'|,; y,y'in Y, y' ey}>0.$ In the paper we prove that the systems${delta(x-y)}_{yin Y}, ;{delta'(x-y)}_{yin Y},{delta(x-y),;delta'(x-y)}_{yin Y}$ {form Riesz} bases in the corresponding closed linear spans in the Sobolev spaces $W_2^{-1}(dR)$ and $W_2^{-2}(dR)$. As an application, we prove the transversalness of the Friedrichs and Kreui n nonnegative selfadjoint extensions of the nonnegative symmetric operators $A_0$, $A'$, and $H_0$ defined {as restrictions} of the operator $A =-frac{ d^2}{ dx^2},$ $dom (A)=W^2_2(dR)${to} the linear manifolds $dom (A_0)=left{ finW_2^2(mathbb{R})colon f(y)=0,; yin Y ight}$, $dom(A')={ gin W_2^2(mathbb{R})colon g'(y)=0,; yin Y },$ and$dom (H_0)=left{fin W_2^2(mathbb{R})colonf(y)=0,;f'(y)=0,; yin Y ight}$, respectively. Using thedivergence forms, the basic nonnegative boundary triplets for$A^*_0$, $A'^*$, and $H^*_0$ are constructed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133