|
BMC Genetics 2010
Detection of quantitative trait loci affecting haematological traits in swine via genome scanningAbstract: In the present study, 18 haematological traits (7 leukocyte traits, 7 erythrocyte traits and 4 platelet traits) were measured in a pig resource population consisting of 368 purebred piglets of three breeds (Landrace, Large White and Songliao Black Pig), after inoculation with the swine fever vaccine when the pigs were 21 days old. A whole-genome scan of QTL for these traits was performed using 206 microsatellite markers covering all 18 autosomes and the X chromosome. Using variance component analysis based on a linear mixed model and the false discovery rate (FDR) test, 35 QTL with FDR < 0.10 were identified: 3 for the leukocyte traits, 28 for the erythrocyte traits, and 4 for the platelet traits. Of the 35 QTL, 25 were significant at FDR < 0.05 level, including 9 significant at FDR < 0.01 level.Very few QTL were previously identified for hematological traits of pigs and never in purebred populations. Most of the QTL detected here, in particular the QTL for the platelet traits, have not been reported before. Our results lay important foundation for identifying the causal genes underlying the hematological trait variations in pigs.In pork-producing community, various infectious diseases caused by viral or bacterial pathogens badly restrict the efficiency of pork industries, and also seriously affect human health in the whole world. To most infectious diseases, the resistance of an individual is resulted from both innate immunity and acquired immunity. The capacity of innate immunity or acquired immunity is more or less controlled by genes [1-4]. The resistance to some diseases is due to a single gene [5,6], but for most diseases it is due to multiple genes [7], among which a few genes (QTL or major genes) have relative large effects and thus play important role in disease resistance. Therefore, detection of these genes or QTL is important for disease-resistant breeding.Haematological traits, which consist of three components: leukocyte traits, erythrocyte traits, and
|