全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Genetics  2011 

QTLRel: an R Package for Genome-wide Association Studies in which Relatedness is a Concern

DOI: 10.1186/1471-2156-12-66

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have successfully used the package to analyze many datasets, including F34 body weight data that contains 688 individuals genotyped at 3105 SNP markers and identified 11 QTL. It took 295 seconds to estimate variance components and 70 seconds to perform the genome scan on an Linux machine equipped with a 2.40GHz Intel(R) Core(TM)2 Quad CPU.QTLRel provides a toolkit for genome-wide association studies that is capable of calculating genetic incidence matrices from pedigrees, estimating variance components, performing genome scans, incorporating interactive covariates and genetic and non-genetic variance components, as well as other functionalities such as multiple-QTL mapping and genome-wide epistasis.Methods to search for quantitative trait loci (QTL) in common experimental designs are well established, and software to analyze these populations is widely available. One popular package, R/qtl [1], provides a comprehensive toolset for QTL mapping. Since it does not allow random effects, R/qtl is most suitable for mapping populations such as F2 and backcross where individuals are equally genetically related. Software that can model polygenic effects due to genetic relatedness includes TASSEL [2] and EMMA [3]. Both allow covariates as fixed effects but are only capable of incorporating a random term to account for one genetic variance component. However, both additive and dominance modes of inheritance are common for many quantitative traits. Ignoring these variance components may result in excessive false positives. Moreover, researchers may also be interested in interactive covariates, epistasis and non-genetic random effects. We have developed an R package QTLRel that meets all these needs.Consider the following statistical modelwhere y is a vector of phenotypes, β is a vector of covariate effects, γ is a vector of putative QTL effects, u is a vector of polygenic effects and ε is a vector of residual effects. X, Q and Z are incidence matrices. β can be fixed, random

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133