|
BMC Genetics 2012
Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analysesKeywords: QTL, linkage analysis, QTL location, bias Abstract: The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location.A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker.Therefore, one should be attentive when one QTL is mapped at the location of one marker, especially under low power conditions.For the last decade, several studies have shown that a large proportion of QTL are mapped at the markers locations whenever linkage analysis is applied. As to what regards dataset analyses, this bias first raised doubts in Spelman et al. [1], who observed a large proportion of significant test
|