|
BMC Genetics 2011
Snat: a SNP annotation tool for bovine by integrating various sources of genomic informationAbstract: With Snat, various sources of genomic information are integrated and retrieved from several leading online databases, including SNP information from dbSNP, gene information from Entrez Gene, protein features from UniProt, linkage information from AnimalQTLdb, conserved elements from UCSC Genome Browser Database and gene functions from Gene Ontology (GO), KEGG PATHWAY and Online Mendelian Inheritance in Animals (OMIA). Snat provides two different applications, including a CGI-based web utility and a command-line version, to access the integrated database, target any single nucleotide loci of interest and perform multi-level functional annotations. For further validation of the practical significance of our study, SNPs involved in two commercial bovine SNP chips, i.e., the Affymetrix Bovine 10K chip array and the Illumina 50K chip array, have been annotated by Snat, and the corresponding outputs can be directly downloaded from Snat website. Furthermore, a real dataset involving 20 identified SNPs associated with milk yield in our recent GWAS was employed to demonstrate the practical significance of Snat.To our best knowledge, Snat is one of first tools focusing on SNP annotation for livestock. Snat confers researchers with a convenient and powerful platform to aid functional analyses and accurate evaluation on genes/variants related to SNPs, and facilitates follow-up replication studies in the post-GWAS era.Currently, genome wide association studies (GWAS) have been widely accepted as a primary approach for gene identification concerning complex traits. A subset of SNPs related to the trait of interest can be derived from GWAS at a specified level of statistical significance. To further determine true association findings in GWAS, the common strategy is to sift out the most promising SNPs for follow-up replication studies. Hence it is crucial to explore the functional significance of the candidate SNPs in order to screen and select the potential functional ones. So fa
|