全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Genetics  2011 

The genetic basis of salinity tolerance traits in Arctic charr (Salvelinus alpinus)

DOI: 10.1186/1471-2156-12-81

Keywords: Arctic charr, salmonid fishes, salinity tolerance, Na+/K+-ATPase, osmoregulation, whole-genome duplications, homeologies, duplicated genes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Combined parental analyses yielded genome-wide significant QTL on linkage groups 8, 14 and 20 for salinity tolerance performance traits, and on 1, 19, 20 and 28 for body size traits. Several QTL exhibited chromosome-wide significance. Among the salinity tolerance performance QTL, trait co-localizations occurred on chromosomes 1, 4, 7, 18 and 20, while the greatest experimental variation was explained by QTL on chromosomes 20 (19.9%), 19 (14.2%), 4 (14.1%) and 12 (13.1%). Several QTL localized to linkage groups exhibiting homeologous affinities, and multiple QTL mapped to regions homologous with the positions of candidate gene loci in other teleosts. There was no gene × environment interaction among body size QTL and ambient salinity.Variation in salinity tolerance capacity can be mapped to a subset of Arctic charr genomic regions that significantly influence performance in a seawater environment. The detection of QTL on linkage group 12 was consistent with the hypothesis that variation in salinity tolerance may be affected by allelic variation at the ATP1α1b locus. IGF2 may also affect salinity tolerance capacity as suggested by a genome-wide QTL on linkage group 19. The detection of salinity tolerance QTL in homeologous regions suggests that candidate loci duplicated from the salmonid-specific whole-genome duplication may have retained their function on both sets of homeologous chromosomes. Homologous affinities suggest that loci affecting salinity tolerance in Arctic charr may coincide with QTL for smoltification and salinity tolerance traits in rainbow trout. The effects of body size QTL appear to be independent of changes in ambient salinity.The life history of anadromous salmonids entails migration between freshwater and seawater environments. To ensure that internal ion concentrations remain homeostatic in the face of abrupt changes in ambient salinity, an individual's osmoregulatory mechanisms must switch between states of ion absorption (i.e., hyper-osmoregu

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133