全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions

DOI: 10.3390/md11010001

Keywords: Nodularia spumigena, cyanobacteria, non-ribosomal peptides, chemotypes, LC-MS/MS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cyanobacteria produce a great variety of non-ribosomal peptides. Among these compounds, both acute toxins and potential drug candidates have been reported. The profile of the peptides, as a stable and specific feature of an individual strain, can be used to discriminate cyanobacteria at sub-population levels. In our work, liquid chromatography-tandem mass spectrometry was used to elucidate the structures of non-ribosomal peptides produced by Nodularia spumigena from the Baltic Sea, the coastal waters of southern Australia and Lake Iznik in Turkey. In addition to known structures, 9 new congeners of spumigins, 4 aeruginosins and 12 anabaenopeptins (nodulapeptins) were identified. The production of aeruginosins by N. spumigena was revealed in this work for the first time. The isolates from the Baltic Sea appeared to be the richest source of the peptides; they also showed a higher diversity in peptide profiles. The Australian strains were characterized by similar peptide patterns, but distinct from those represented by the Baltic and Lake Iznik isolates. The results obtained with the application of the peptidomic approach were consistent with the published data on the genetic diversity of the Baltic and Australian populations.

References

[1]  Welker, M.; von D?hren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563, doi:10.1111/j.1574-6976.2006.00022.x.
[2]  Ishida, K.; Christiansen, G.; Yoshida, W.Y.; Kurmayer, R.; Welker, M.; Valls, N.; Bonjoch, J.; Hertweck, C.; B?rner, T.; Hemscheidt, T.; et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 2007, 14, 565–576, doi:10.1016/j.chembiol.2007.04.006.
[3]  Fewer, D.P.; Jokela, J.; Rouhiainen, L.; Wahlsten, M.; Koskenniemi, K.; Stal, L.J.; Sivonen, K. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 2009, 73, 924–937, doi:10.1111/j.1365-2958.2009.06816.x.
[4]  Rouhiainen, L.; Jokela, J.; Fewer, D.P.; Urmann, M.; Sivonen, K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). Chem. Biol. 2010, 17, 265–273, doi:10.1016/j.chembiol.2010.01.017.
[5]  Schmidt, E.W.; Donia, M.S. Cyanobactin ribosomally synthesized peptides—A case of deep metagenome mining. Methods Enzymol. 2009, 458, 575–596.
[6]  Sivonen, K.; Leikoski, N.; Fewer, D.P.; Jokela, J. Cyanobactin-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 2010, 86, 1213–1225, doi:10.1007/s00253-010-2482-x.
[7]  Ziemert, N.; Ishida, K.; Liaimer, A.; Hertweck, C.; Dittmann, E. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angew. Chem. Int. Ed. 2008, 47, 7756–7759.
[8]  Rounge, T.B.; Rohrlack, T.; Nederbragt, A.J.; Kristensen, T.; Jakobsen, K.S. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. BMC Genomics 2009, 10, 1–11.
[9]  Dittmann, E.; Neilan, B.A.; B?rner, T. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl. Microbiol. Biotechnol. 2001, 57, 467–473.
[10]  Moffitt, M.C.; Neilan, B.A. The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol. Lett. 2000, 191, 159–167, doi:10.1111/j.1574-6968.2000.tb09334.x.
[11]  Harada, K.-I.; Fujii, K.; Shimada, T.; Suzuki, M.; Sano, H.; Adach, K. Two cyclic peptides, anabaenopeptins, a third group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17. Tetrahedron Lett. 1995, 36, 1511–1514, doi:10.1016/0040-4039(95)00073-L.
[12]  Fujii, K.; Mayumi, T.; Noguchi, K.; Kashiwagi, T.; Akashi, S.; Sivonen, K.; Hirayama, K.; Harada, K.-I. Mass spectrometry studies of peptides from cyanobacteria under FAB MS/MS conditions. J. Mass. Spectrom. Soc. Jpn. 2000, 48, 56–64, doi:10.5702/massspec.48.56.
[13]  Welker, M.; Christiansen, G.; van D?hren, H. Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microcystins and other oligopeptides. Arch. Microbiol. 2004, 182, 288–298, doi:10.1007/s00203-004-0711-3.
[14]  Welker, M.; Brunke, M.; Preussel, K.; Lippert, I.; van D?hren, H. Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 2004, 150, 1785–1796, doi:10.1099/mic.0.26947-0.
[15]  Ohta, T.; Sueoka, E.; Iida, N.; Komori, A.; Suganuma, M.; Nishiwaki, R.; Tatematsu, M.; Kim, S.J.; Carmichael, W.W.; Fujiki, H. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, a new environmental carcinogen in male F344 rat liver. Cancer Res. 1994, 54, 6402–6406.
[16]  Ishida, K.; Okita, Y.; Matsuda, H.; Okino, T.; Murakami, M. Aeruginosins, protease inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron 1999, 55, 10971–10988, doi:10.1016/S0040-4020(99)00621-3.
[17]  Reshef, V.; Carmeli, S. Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa. Tetrahedron 2001, 57, 2885–2894, doi:10.1016/S0040-4020(01)00141-7.
[18]  Rohrlack, T.; Christoffersen, K.; Kaebernick, M.; Neilan, B.A. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl. Environ. Microbiol. 2004, 70, 5047–5050, doi:10.1128/AEM.70.8.5047-5050.2004.
[19]  Czarnecki, O.; Henning, M.; Lippert, I.; Welker, M. Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environ. Microbiol. 2006, 8, 77–87, doi:10.1111/j.1462-2920.2005.00870.x.
[20]  Gesner-Apter, S.; Carmeli, S. Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 2009, 72, 1429–1436, doi:10.1021/np900340t.
[21]  Radau, G.; Gebel, J.; Rauh, D. New cyanopeptide-derived low molecular weight thrombin inhibitors. Arch. Pharm. 2003, 336, 372–380.
[22]  Ersmark, K.; Del Valle, J.R.; Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 2008, 47, 1202–1223, doi:10.1002/anie.200605219.
[23]  Rastogi, R.P.; Sinha, S.P. Biotechnology and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009, 27, 521–539, doi:10.1016/j.biotechadv.2009.04.009.
[24]  Silva-Stenico, M.E.; Silva, C.S.; Lorenzi, A.S.; Shishido, T.K.; Etchegaray, A.; Lira, S.P.; Moraes, L.A.; Fiore, M.F. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol. Res. 2010, 166, 161–175.
[25]  Rinehart, K.L.; Harada, K.; Namikoshi, M.; Chen, C.; Harvis, C.A.; Munroe, M.H.G.; Blunt, J.W.; Mulligan, P.E.; Beasley, V.R.; Dahlem, A.M.; et al. Nodularin, microcystin and the configuration of Adda. J. Am. Chem. Soc. 1988, 110, 8557–8558.
[26]  Namikoshi, M.; Choi, B.W.; Sakai, R.; Sun, F.; Rinehart, K.L.; Carmichael, W.W.; Evans, W.R.; Cruz, P.; Munro, M.H.G.; Blunt, J.W. New nodularin: A general method for structure assignment. J. Org. Chem. 1994, 59, 2349–2357.
[27]  Fujii, K.; Sivonen, K.; Adachi, K.; Noguchi, K.; Sano, H.; Hirayama, K.; Suzuki, M.; Harada, K.-I. Comparative study of toxic and non-toxic cyanobacteria products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett. 1997, 38, 5525–5528.
[28]  Beattie, K.A.; Kaya, K.; Codd, G.A. The cyanobacterium Nodularia PCC 7804, of freshwater origin, produces [L-Har2] nodularin. Phytochemistry 2000, 54, 57–61.
[29]  Gehringer, M.M.; Adler, L.; Roberts, A.A.; Moffitt, M.C.; Mihali, T.K.; Mills, T.J.; Fieker, C.; Neilan, B.A. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J. 2012, 6, 1834–1847, doi:10.1038/ismej.2012.25.
[30]  Kaasalainen, U.; Fewer, D.P.; Jokele, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 5886–5891.
[31]  Ploutno, A.; Shoshan, M.; Carmeli, S. Three novel protease inhibitors from a natural bloom of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 2002, 65, 973–978, doi:10.1021/np010597b.
[32]  Ishida, K.; Welker, M.; Christiansen, G.; Cadel-Six, S.; Bouchier, C.; Dittmann, E. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 2009, 75, 2017–2026.
[33]  Murakami, M.; Ishida, K.; Okino, T.; Okira, Y.; Matsuda, H.; Yamaguchi, K. Aeruginosins 98-A and B, trypsyn inhibitors from the blue-green alga Microcystis aeruginosa (NIES-98). Tetrahedron Lett. 1995, 36, 2785–2788.
[34]  Hanessian, S.; Tremblay, M.; Petersen, J.F.W. The N-acyloxyiminium ion aza-prins route to octahydroindoles: Total synthesis and structural confirmation of the antithrombotic marine natural product oscillarin. J. Am. Chem. Soc. 2004, 126, 6064–6071, doi:10.1021/ja030669g.
[35]  Cadel-Six, S.; Dauga, C.; Castets, A.M.; Rippka, R.; Bouchier, C.; de Marsac, N.T.; Welker, M. Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (Cyanobacteria): Sporadic distribution and evolution. Mol. Biol. Evol. 2008, 25, 2031–2041, doi:10.1093/molbev/msn150.
[36]  Welker, M.; Mar?álek, B.; ?ejnohová, L.; von D?hren, H. Detection and identification of oligopeptides in Microcystis (Cyanobacteria) colonies: Toward an understanding of metabolic diversity. Peptides 2006, 27, 2090–2103, doi:10.1016/j.peptides.2006.03.014.
[37]  Pearson, L.; Mihali, T.; Moffitt, M.; Kellmann, R.; Neilan, B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopin. Mar. Drugs 2010, 8, 1650–1680, doi:10.3390/md8051650.
[38]  Bolch, C.J.S.; Orr, P.T.; Jones, G.J.; Blackburn, S.I. Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). J. Phycol. 1999, 35, 339–355, doi:10.1046/j.1529-8817.1999.3520339.x.
[39]  Moffitt, M.C.; Blackburn, S.I.; Neilan, B.A. rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. Int. J. Syst. Evol. Microbiol. 2001, 51, 505–512.
[40]  Erhard, M.; von D?hren, H.; Jungblut, P.R. Rapid identification of the new anabaenopeptin G from Planktothrix agardhii HUB 011 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 337–342.
[41]  Mayumi, T.; Kato, H.; Kawasaki, Y.; Harada, K.-I. Formation of diagnostic product ions from cyanobacterial cyclic peptides by the two-bond fission mechanism using ion trap liquid chromatography/multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1025–1033.
[42]  Puddick, J.; Prinsep, M.R. MALDI-TOF mass spectrometry of cyanobacteria: A global approach to the discovery of novel secondary metabolites. Chem. N. Z. 2008, 72, 68–71.
[43]  Schumacher, M.; Wilson, N.; Tabudravu, J.N.; Edwards, C.; Lawton, L.A.; Motti, C.; Wright, A.D.; Diederich, M.; Jaspars, M. New nodulapeptins from Nodularia spumigena KAC 66. Tetrahedron 2011, 68, 1622–1628.
[44]  Christiansen, G.; Philmus, B.; Hemscheidt, T.; Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of the substrate promiscuity. J. Bacteriol. 2011, 193, 3822–3831, doi:10.1128/JB.00360-11.
[45]  Lehtim?ki, J.; Lyra, C.; Suomalainen, S.; Sundman, P.; Rouhiainen, L.; Paulin, L.; Salkinoja-Salonen, M.; Sivonen, K. Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int. J. Syst. Evol. Microbiol. 2000, 50, 1043–1053, doi:10.1099/00207713-50-3-1043.
[46]  Hayes, P.K.; Barker, G.L.A. Genetic diversity within Baltic Sea populations of Nodularia (Cyanobacteria). J. Phycol. 1997, 33, 919–923.
[47]  Laamanen, M.J.; Gugger, M.F.; Lehtim?ki, J.; Haukka, K.; Sivonen, K. Diversity of toxic and non-toxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl. Environ. Microbiol. 2001, 67, 4638–4647, doi:10.1128/AEM.67.10.4638-4647.2001.
[48]  Fastner, J.; Erhard, M.; von D?hren, H. Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2001, 7, 5069–5076.
[49]  Yépremian, C.; Gugger, M.F.; Briand, E.; Catherine, A.; Berger, C.; Quiblier, C.; Bernard, C. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res. 2007, 41, 4446–4456, doi:10.1016/j.watres.2007.06.028.
[50]  Rohrlack, T.; Edvardsen, B.; Skulberg, R.; Halstvedt, B.; Utkilen, H.C.; Ptacnik, R.; Skulberg, O.M. Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol. Oceanogr. 2008, 53, 1279–1293, doi:10.4319/lo.2008.53.4.1279.
[51]  Martins, J.; Saker, M.L.; Moreira, C.; Welker, M.; Fastner, J.; Vasconcelos, V.M. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl. Microbiol. Biotechnol. 2009, 82, 951–961, doi:10.1007/s00253-009-1877-z.
[52]  Haande, S.; Ballot, A.; Rohrlack, T.; Fastner, J.; Wiedner, C.; Edvardsen, B. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch. Microbiol. 2007, 188, 15–25, doi:10.1007/s00203-007-0219-8.
[53]  Rantala, A.; Fewer, D.P.; Hisbergues, M.; Rouhiainen, L.; Vaitomaa, J.; B?rner, T.; Sivonen, K. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 568–573.
[54]  Moffitt, M.C.; Neilan, B.A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 2004, 70, 6353–6362, doi:10.1128/AEM.70.11.6353-6362.2004.
[55]  Rounge, T.B.; Rohrlack, T.; Decenciere, B.; Edvardsen, B.; Kristensen, T.; Jakobsen, K.S. Subpopulation differentiation associated with nonribosomal peptide synthetase gene cluster dynamics in the cyanobacterium Planktothrix spp. J. Phycol. 2010, 46, 645–652, doi:10.1111/j.1529-8817.2010.00856.x.
[56]  Suikkanen, S.; Fistarol, G.O.; Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 2004, 308, 85–101, doi:10.1016/j.jembe.2004.02.012.
[57]  Schatz, D.; Keren, Y.; Vardi, A.; Sukenik, A.; Carmeli, S.; B?rner, T.; Dittmann, E.; Kaplan, A. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 2007, 9, 965–970, doi:10.1111/j.1462-2920.2006.01218.x.
[58]  Sedmak, B.; Carmeli, S.; Eler?ek, T. Non-toxic” cyclic peptides induce lysis of cyanobacteria—An effective cell population density control mechanism in cyanobacterial blooms. Microbiol. Ecol. 2008, 56, 201–209, doi:10.1007/s00248-007-9336-9.
[59]  S?nsteb?, J.H.; Rohrlack, T. Possible implication of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 2011, 77, 1344–1351, doi:10.1128/AEM.02153-10.
[60]  Sano, T.; Usui, T.; Ueda, K.; Osada, H.; Kaya, K. Isolation of new protein phosphatase inhibitors from two cyanobacteria species, Planktothrix sp. J. Nat. Prod. 2001, 64, 1052–1055, doi:10.1021/np0005356.
[61]  Sano, T.; Kaya, K. Oscillamide Y, a chymotrypsin inhibitor from toxic Oscillatoria agardhii. Tetrahedron Lett. 1995, 36, 5933–5936.
[62]  Murakami, M.; Suzuki, S.; Itou, Y.; Kodani, S.; Ishida, K. New anabaenopeptins, potent carboxypeptidase—A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod. 2000, 83, 1280–1282.
[63]  Bubik, A.; Sedmak, B.; Novinec, M.; Lenar?i?, B.; Lah, T.T. Cytotoxic and peptidase inhibitory activities of selected non-hepatotoxic cyclic peptides from cyanobacteria. Biol. Chem. 2008, 389, 1339–1346.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133