全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT

DOI: 10.3390/md11010184

Keywords: endotoxin, lipid A, mass spectrometry, Salinivibrio sharmensis, haloalkaliphile

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lipid A is a major constituent of the lipopolysaccharides (or endotoxins), which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS) of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR) mass spectrometry and chemical analysis.

References

[1]  Galinsky, E.A. Compatible solutes of halophilic eubacteria: Molecular principles, water-solute interaction, stress protection. Experientia 1993, 49, 487–496, doi:10.1007/BF01955150.
[2]  Galinsky, E.A.; Trüper, H.G. Microbial behavior in salt-stressed ecosystems. FEMS Microbiol. Rev. 1994, 15, 95–108, doi:10.1111/j.1574-6976.1994.tb00128.x.
[3]  Van de Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 2003, 6, 213–218, doi:10.1016/S1369-5274(03)00060-2.
[4]  Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Comp. Rev. Food Sci. Food Safety 2004, 3, 1–20, doi:10.1111/j.1541-4337.2004.tb00057.x.
[5]  Russell, N.J.; Evans, R.I.; ter Steeg, P.F.; Hellemons, J.; Verheul, A.; Abee, T. Membranes as a target for stress adaptation. Int. J. Food Microbiol. 1995, 28, 255–261, doi:10.1016/0168-1605(95)00061-5.
[6]  Alexander, C.; Z?hringer, U. Chemical Structure of Lipid A. The Primary Immunomodulatory Center of Bacterial Lipopolysaccharides. Trends Glycosci. Glycotechnol. 2002, 14, 69–86, doi:10.4052/tigg.14.69.
[7]  Endotoxin in Health and Disease; Brade, H., Opal, S.M., Vogel, S.N., Morrison, D.C., Eds.; Marcel Dekker: New York, NY, USA, 1999; pp. 93–114.
[8]  Holst, O. The structures of core regions from enterobacterial lipopolysaccharides—an update. FEMS Microbiol. Lett. 2007, 271, 3–11, doi:10.1111/j.1574-6968.2007.00708.x.
[9]  Izquierdo, L.; Coderch, N.; Piqué, N.; Bedini, E.; Corsaro, M.M.; Merino, S.; Fresno, S.; Tomás, J.M.; Regué, M. The Klebsiella pneumonia wabG gene: Its role in the biosynthesis of the core lipopolysaccharide and virulence. J. Bacteriol. 2003, 185, 7213–7221, doi:10.1128/JB.185.24.7213-7221.2003.
[10]  Fresno, S.; Jiménez, N.; Izquierdo, L.; Merino, S.; Corsaro, M.M.; de Castro, C.; Parrilli, M.; Naldi, T.; Regué, M.; Tomás, J.M. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology 2006, 152, 1807–1818, doi:10.1099/mic.0.28611-0.
[11]  Pieretti, G.; Carillo, S.; Lindner, B.; Kim, K.K.; Lee, K.C.; Lee, J.S.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Characterization of the core oligosaccharide and the O-antigen biological repeating unit from Halomonas stevensii LPS: The first case of O-antigen linked to the inner core. Chem. Eur. J. 2012, 18, 3729–3735.
[12]  Carillo, S.; Pieretti, G.; Parrilli, E.; Tutino, M.L.; Gemma, S.; Molteni, M.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Structural Investigation and Biological Activity of the Lipooligosaccharide from the Psychrophilic Bacterium Pseudoalteromonas haloplanktis TAB 23. Chem. Eur. J. 2011, 17, 7053–7060.
[13]  Romano, I.; Orlando, P.; Gambacorta, A.; Nicolaus, B.; Dipasquale, L.; Pascual, J.; Giordano, A.; Lama, L. Salinivibrio sharmensis sp. nov., a novel haloalkaliphilic bacterium from a saline lake in Ras Mohammed Park (Egypt). Extremophiles 2011, 15, 213–220, doi:10.1007/s00792-010-0349-9.
[14]  Galanos, C.; Lüderitz, O.; Westphal, O. A new method for the extraction of R lipopolysaccharides. Eur. J. Biochem. 1969, 9, 245–249, doi:10.1111/j.1432-1033.1969.tb00601.x.
[15]  Domon, B.; Costello, C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409, doi:10.1007/BF01049915.
[16]  Kondakova, A.; Lindner, B. Structural characterization of complex bacterial glycolipids by Fourier transform mass spectrometry. Eur. J. Mass Spectrom. 2005, 11, 535–546, doi:10.1255/ejms.721.
[17]  Silipo, A.; Lanzetta, R.; Amoresano, A.; Parrilli, M.; Molinaro, A. Ammonium hydroxide hydrolysis: A valuable support in the MALDI-TOF mass spectrometry analysis of Lipid A fatty acid distribution. J. Lipid Res. 2002, 43, 2188–2195, doi:10.1194/jlr.D200021-JLR200.
[18]  Carillo, S.; Pieretti, G.; Lindner, B.; Romano, I.; Nicolaus, B.; Lanzetta, R.; Parrilli, M.; Corsaro, M.M. Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the haloalkaliphilic bacterium Salinivibrio sharmensis strain BAGT. Carbohydr. Res. 2012, doi:10.1016/j.carres.2012.12.013.
[19]  Holst, O.; Müller-Loennies, S.; Lindner, B.; Brade, H. Chemical structure of the lipid A of Escherichia coli J-5. Eur. J. Biochem. 1993, 214, 695–701, doi:10.1111/j.1432-1033.1993.tb17970.x.
[20]  Kulshin, V.A.; Zaehringer, U.; Lindner, B.; Frasch, C.E.; Tsai, C.M.; Dmitriev, B.A.; Rietschel, E.T. Structural characterization of the lipid A component of pathogenic Neisseria meningitidis. J. Bacteriol. 1992, 174, 1793–1800.
[21]  Zughaier, S.; Steeghs, L.; van der Ley, P.; Stephens, D.S. TLR4-dependent adjuvant activity of Neisseria meningitidis lipid A. Vaccine 2007, 25, 4401–4409, doi:10.1016/j.vaccine.2007.03.029.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133