In order to search for sulfated polysaccharides in different invertebrate connective tissues and to examine their biological activities, we have isolated three types of polysaccharides from the body wall of the three sea cucumbers Holothuria edulis, Apostichopus japonicas and Holothuria nobilis. The physicochemical properties and anticoagulant activities of these polysaccharides were examined and compared. The chemical composition analysis and nuclear magnetic resonance (NMR) analysis indicate that two types of polysaccharides, sulfated fucan and fucosylated chondroitin sulfate (FuCS), were found in all of the three species and in addition a neutral glycan was observed in H.?edulis. The neutral α-glucan was firstly obtained from sea cucumber. The same type of polysaccharides from different species of sea cucumbers have similar physicochemical properties and anticoagulant activities, but those of different types of glycans are significantly different, possibly due to their different monosaccharide compositions, electric charges and average molecular weights. The FuCSs have stronger anticoagulant activities than the sulfated fucans, although the molecular sizes of the FuCSs are lower than those of the sulfated fucans, whereas the neutral glucan has no activity, as expected from the absence of sulfate. Thus, anticoagulant activities of the different type of polysaccharides are likely to relate to monosaccharide composition and sulfate content. Preliminary analysis suggests that the sulfation patterns of the FuCSs may result in the difference in anticoagulant activities. Our data could help elucidate the structure-activity relationship of the sea cucumber polysaccharides.
Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs 2011, 9, 1761–1805, doi:10.3390/md9101761.
[5]
Pomin, V.H. Fucanomics and galactanomics: Marine distribution, medicinal impact, conceptions, and challenges. Mar. Drugs 2012, 10, 793–811, doi:10.3390/md10040793.
[6]
Pomin, V.H.; Mour?o, P.A.S. Structure, biology, evolution and medical importance of sulfated fucans and galactans. Glycobiology 2008, 18, 1016–1027, doi:10.1093/glycob/cwn085.
[7]
Buyue, Y.; Sheehan, J.P. Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa heparin-binding exosite. Blood 2009, 114, 3092–3100, doi:10.1182/blood-2009-02-203661.
[8]
Fonseca, R.J.; Mour?o, P.A.S. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thromb. Haemost. 2006, 96, 822–829.
Wu, M.Y.; Xu, S.M.; Zhao, J.H.; Kang, H.; Ding, H. Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free radical depolymerization of a fucosylated chondroitin sulfate from sea cucumber Thelenota ananas. Food Chem. 2010, 122, 716–723, doi:10.1016/j.foodchem.2010.03.042.
[11]
Nishino, T.; Aizu, Y.; Nagumo, T. Influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb. Res. 1991, 64, 723–731, doi:10.1016/0049-3848(91)90072-5.
[12]
Haroun-Bouhedja, F.; Ellouali, M.; Sinquin, C.; Boisson-Vidal, C. Relationship between sulfate groups and biological activities of fucans. Thromb. Res. 2000, 100, 453–459, doi:10.1016/S0049-3848(00)00338-8.
[13]
Wu, M.Y.; Huang, R.; Wen, D.D.; Gao, N.; He, J.B.; Li, Z.; Zhao, J.H. Structure and effect of sulfated fucose branches on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenota ananas. Carbohydr. Polym. 2012, 87, 862–868, doi:10.1016/j.carbpol.2011.08.082.
[14]
Gao, N.; Wu, M.Y.; Liu, S.; Lian, W.; Li, Z.; Zhao, J.H. Preparation and characterization of O-acylatedfucosylated chondroitin sulfate from sea cucumber. Mar. Drugs 2012, 10, 1647–1661, doi:10.3390/md10081647.
[15]
Ribeiro, A.-C.; Vieira, R.P.; Mour?o, P.A.S.; Mulloy, B. A sulfated α-L-fucan from sea cucumber. Carbohydr. Res. 1994, 255, 225–240, doi:10.1016/S0008-6215(00)90981-9.
[16]
Kariya, Y.; Mulloy, B.; Imai, K.; Tominaga, A.; Kaneko, T.; Asari, A.; Suzuki, K.; Masuda, H.; Kyogashima, M.; Ishii, T. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis. Carbohydr. Res. 2004, 339, 1339–1346, doi:10.1016/j.carres.2004.02.025.
[17]
Mour?o, P.A.S.; Pereira, M.S.; Pav?o, M.S.G.; Mulloy, B.; Tollefsen, D.M.; Mowinckel, M.C.; Abildgaard, U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm: Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J. Biol. Chem. 1996, 271, 23973–23984.
[18]
Yoshida, K.; Minami, Y.; Nemoto, H.; Numata, K.; Yamanaka, E. Structure of DHG, a depolymerizedglycosaminoglycan from sea cucumber Stichopus japonicus. Tetrahedron Lett. 1992, 33, 4959–4962, doi:10.1016/S0040-4039(00)61245-5.
[19]
Chen, S.G.; Xue, C.H.; Yin, L.A.; Tang, Q.J.; Yu, G.L.; Chai, W.G. Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydr. Polym. 2011, 83, 688–695, doi:10.1016/j.carbpol.2010.08.040.
[20]
Kariya, Y.; Watabe, S.; Hashimoto, K.; Yoshida, K. Occurrence of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus. J. Biol. Chem. 1990, 265, 5081–5085.
[21]
Vieira, R.P.; Mulloy, B.; Mour?o, P.A.S. Structure of a fucose-branched chondroitin sulfate from sea cucumber: Evidence for the presence of 3-O-sulfo-β-D-glucuronosyl residues. J. Biol. Chem. 1991, 266, 13530–13536.
[22]
Casu, B.; Gennaro, U. A conductimetric method for the determination of sulphate and carboxyl groups in heparin and other mucopolysaccharides. Carbohydr. Res. 1975, 39, 168–176, doi:10.1016/S0008-6215(00)82654-3.
[23]
Tsukamoto, T.; Hattori, M.; Sakabe, M.; Haginaka, J. Determination of the molecular mass of new L-fucose-containing glycosaminoglycan and its distribution by high-performance gel-permeation chromatography with laser light-scattering detection. Anal. Sci. 2001, 17, 555–558, doi:10.2116/analsci.17.555.
[24]
Wu, M.Y.; Xu, S.M.; Zhao, J.H.; Kang, H.; Ding, H. Preparation and characterization of molecular weight fractions of glycosaminoglycan from sea cucumber Thelenota ananas using free radical depolymerization. Carbohydr. Res. 2010, 345, 649–655, doi:10.1016/j.carres.2009.11.030.
[25]
Wasteson, A. Properties of fractionated chondroitinsulphate from ox nasal septa. Biochem. J. 1971, 122, 477–485.
[26]
Hu, C.F.; Li, J.H.; Yang, D.Y.; Pan, Y.J.; Wan, H.T. A neuroprotective polysaccharide from Hyriopsis cumingii. J. Nat. Prod. 2010, 73, 1489–1493, doi:10.1021/np1001847.
[27]
Mour?o, P.A.S.; Boisson-Vidal, C.; Tapon-Bretaudiere, J.; Drouet, B.; Bros, A.; Fischer, A. Inactivation of thrombin by a fucosylated chondroitin sulfate from echinoderm. Thromb. Res. 2001, 102, 167–176, doi:10.1016/S0049-3848(01)00230-4.
[28]
Pereira, M.S.; Mulloy, B.; Mour?o, P.A.S. Structure and anticoagulant activity of sulfated fucans: Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 1999, 274, 7656–7667.
[29]
Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489, doi:10.1016/0003-2697(73)90377-1.
[30]
Rondle, C.J.; Morgan, W.T.J. The determination of glucosamine and galactosamine. Biochem. J. 1955, 61, 586–589.
[31]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; People’s Medical Publishing: Beijing, China, 2005; Volume II. Appendix VI E A–48.
[32]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; People’s Medical Publishing: Beijing, China, 2005; Volume II. Appendix VI G A–48.
[33]
Fu, D.T.; O’Neill, R.A. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal. Biochem. 1995, 227, 377–384, doi:10.1006/abio.1995.1294.
[34]
Fu, D.T.; Zopf, D. Analysis of sialyllactoses in blood and urine by high-performance liquid chromatography. Anal. Biochem. 1999, 269, 113–123, doi:10.1006/abio.1998.3021.