全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Gene Cloning, Expression and Characterization of a Novel Xylanase from the Marine Bacterium, Glaciecola mesophila KMM241

DOI: 10.3390/md11041173

Keywords: xylanase, XynB, cold-active, Glaciecola mesophila KMM241, carbohydrate-binding module

Full-Text   Cite this paper   Add to My Lib

Abstract:

Marine xylanases are rather less studied compared to terrestrial xylanases. In this study, a new xylanase gene, xynB, was cloned from the marine bacterium, Glaciecola mesophila KMM241, and expressed in Escherichia coli. xynB encodes a multi-domain xylanase XynB of glycoside hydrolase (GH) family 8. The recombinant XynB comprises an N-terminal domain (NTD) with unknown function and a catalytic domain, which is structurally novel among the characterized xylanases of GH family 8. XynB has the highest identity (38%) to rXyn8 among the characterized xylanases. The recombinant XynB showed maximal activity at pH 6–7 and 35 °C. It is thermolabile and salt-tolerant. XynB is an endo-xylanase that demands at least five sugar moieties for effective cleavage and to hydrolyze xylohexaose and xylopentaose into xylotetraose, xylotriose and xylobiose. NTD was expressed in Escherichia coli to analyze its function. The recombinant NTD exhibited a high binding ability to insoluble xylan and avicel and little binding ability to chitosan and chitin. Since the NTD shows no obvious homology to any known carbohydrate-binding module (CBM) sequence in public databases, XynB may contain a new type of CBM.

References

[1]  Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338, doi:10.1007/s002530100704.
[2]  Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23, doi:10.1016/j.femsre.2004.06.005.
[3]  Saha, B.C.; Bothast, R.J. Enzymology of Xylan Degradation. In Biopolymers; Imam, S.H., Greene, R.V., Zaidi, B.R., Eds.; American Chemical Society: Washington, DC, USA, 1999; pp. 167–194.
[4]  Dhiman, S.S.; Sharma, J.; Battana, B. Industrial applications and future prospects of microbial xylanases: A review. BioResources 2008, 3, 1377–1402.
[5]  Juturu, V.; Wu, J.C. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 2011, 30, 1219–1227, doi:10.1016/j.biotechadv.2011.11.006.
[6]  Pollet, A.; Schoepe, J.; Dornez, E.; Strelkov, S.V.; Delcour, J.A.; Courtin, C.M. Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 87, 2125–2135, doi:10.1007/s00253-010-2659-3.
[7]  Yoon, K.H.; Yun, H.N.; Jung, K.H. Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product. Biochem. Mol. Biol. Int. 1998, 45, 337–347.
[8]  Collins, T.; Meuwis, M.A.; Stals, I.; Claeyssens, M.; Feller, G.; Gerday, C. A novel family 8 xylanase: Functional and physicochemical characterization. J. Biol. Chem. 2002, 277, 35133–35139.
[9]  Brennan, Y.; Callen, W.N.; Christoffersen, L.; Dupree, P.; Goubet, F.; Healey, S.; Hernandez, M.; Keller, M.; Li, K.; Palackal, N.; et al. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 2004, 70, 3609–3617.
[10]  Lee, C.C.; Kibblewhite-Accinelli, R.E.; Wagschal, K.; Robertson, G.H.; Wong, D.W. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 2006, 10, 295–300, doi:10.1007/s00792-005-0499-3.
[11]  Honda, Y.; Kitaoka, M. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J. Biol. Chem. 2004, 279, 55097–55103, doi:10.1074/jbc.M409832200.
[12]  Van den Broek, L.A.M.; Lloyd, R.M.; Beldman, G.; Verdoes, J.C.; McCleary, B.V.; Voragen, A.G.J. Cloning and characterization of arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl. Microbiol. Biotechnol. 2005, 67, 641–647.
[13]  Wu, S.; Liu, B.; Zhang, X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 2006, 72, 1210–1216, doi:10.1007/s00253-006-0416-4.
[14]  Guo, B.; Chen, X.L.; Sun, C.Y.; Zhou, B.C.; Zhang, Y.Z. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM241. Appl. Microbiol. Biotechnol. 2009, 84, 1107–1115, doi:10.1007/s00253-009-2056-y.
[15]  Liu, Z.; Zhao, X.Q.; Bai, F.W. Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl. Microbiol. Biotechnol. 2012, doi:10.1007/s00253-012-4290-y.
[16]  Romanenko, L.A.; Zhukova, N.V.; Rohde, M.; Lysenko, A.M.; Mikhailov, V.V.; Stackebrandt, E. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int. J. Syst. Evol. Microbiol. 2003, 53, 647–651, doi:10.1099/ijs.0.02469-0.
[17]  Zheng, H.; Guo, B.; Chen, X.L.; Fan, S.J.; Zhang, Y.Z. Improvement of the quality of wheat bread by addition of glycoside hydrolase family 10 xylanases. Appl. Microbiol. Biotechnol. 2011, 90, 509–515, doi:10.1007/s00253-011-3088-7.
[18]  Saito, H.; Miura, K. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 1963, 72, 619–629, doi:10.1016/0926-6550(63)90386-4.
[19]  Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685, doi:10.1038/227680a0.
[20]  Miller, G.L.; Blum, R.; Glennon, W.E.; Burton, A.L. Measurement of carboxymethyl cellulase activity. Anal. Biochem. 1960, 2, 127–132.
[21]  Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254, doi:10.1016/0003-2697(76)90527-3.
[22]  Pason, P.; Kyu, K.L.; Ratanakhanokchai, K. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 2006, 72, 2483–2490, doi:10.1128/AEM.72.4.2483-2490.2006.
[23]  Valenzuela, S.V.; Diaz, P.; Pastor, F.L.J. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 2012, 78, 3923–3931, doi:10.1128/AEM.07932-11.
[24]  Cantarel, B.C.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, T.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238, doi:10.1093/nar/gkn663.
[25]  Hung, K.S.; Liu, S.M.; Tzou, W.S.; Lin, F.P.; Pan, C.L.; Fang, T.Y.; Sun, K.H.; Tang, S.J. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Proc. Biochem. 2011, 46, 1257–1263, doi:10.1016/j.procbio.2011.02.009.
[26]  Fialho, M.B.; Carmona, E.C. Purification and characterization of xylanase from Aspergillus giganteus. Folia Microbiol. 2004, 49, 13–18, doi:10.1007/BF02931639.
[27]  Gupta, S.; Bhushan, B.; Hoondal, G.S. Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J. Appl. Microbiol. 2000, 88, 325–334, doi:10.1046/j.1365-2672.2000.00974.x.
[28]  Yamaura, I.; Koga, T.; Matsumoto, T.; Kato, T. Purification and some properties of endo-1,4-β-d-xylanase from a fresh-water mollusc, Pomacea insularus (de Ordigny). Biosci. Biotechnol. Biochem. 1997, 61, 615–620, doi:10.1271/bbb.61.615.
[29]  Zhang, G.; Huang, J.; Huang, G.; Ma, L.; Zhang, X. Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl. Microbiol. Biotechnol. 2007, 74, 339–346, doi:10.1007/s00253-006-0648-3.
[30]  Ali, M.K.; Hayashi, H.; Karita, S.; Goto, M.; Kimura, T.; Sakka, K.; Ohmiya, K. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 2001, 65, 41–47.
[31]  Carrard, G.; Koivula, A.; Soderlund, H.; Beguin, P. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 2000, 97, 10342–10347, doi:10.1073/pnas.160216697.
[32]  Sunna, A.; Gibbs, M.D.; Bergquist, P.L. A novel thermostable multidomain 1,4-β-xylanase from ‘Caldibacillus cellulovorans’ and effect of its xylan-binding domain on enzyme activity. Microbiology 2000, 146, 2947–2955.
[33]  Waeonukul, R.; Pason, P.; Kyu, K.L.; Sakka, K.; Kosugi, A.; Mori, Y.; Ratanakhanokchai, K. Cloning, sequencing, and expression of the gene encoding a multidomain endo-β-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 2009, 19, 277–285.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133