全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Overall Effects of AlN Nanoparticle Addition to Hybrid Magnesium Alloy AZ91/ZK60A

DOI: 10.1155/2012/687306

Full-Text   Cite this paper   Add to My Lib

Abstract:

A hybrid magnesium alloy nanocomposite containing AlN nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable AlN and intermetallic nanoparticle distribution, nondominant ( 0 0 0 2 ) texture in the longitudinal direction, and 17% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite exhibited higher tensile yield strength (0.2% TYS) and ultimate tensile strength (UTS) without significant compromise in failure strain and energy absorbed until fracture (EA) (+5%, +5%, ?14% and ?10%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite exhibited unchanged compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and EA (+1%, +6%, +24%, and +6%, resp.). The overall effects of AlN nanoparticle addition on the tensile and compressive properties of the hybrid magnesium alloy is investigated in this paper. 1. Introduction Compared to aluminium, magnesium is the lightest structural metal (35% lighter) used in many engineering applications today [1, 2]. Commercially available magnesium alloys are suitable for actual or potential use regarding weight-critical applications in the automotive, aerospace, civil infrastructure, building and construction, defence, biomedical, and sports/recreational industries [1, 3]. In the World War 2 era, Mg-Zn alloy parts were economically manufactured and heavily used in aircraft [3]. Soon after the world war, Mg-Al alloys were also economically developed with specific metallurgical advantages over Mg-Zn alloys [3]. At present, Mg-Y and Mg-RE (Rare Earth) alloys are in development for even more specific metallurgical advantages but at generally higher cost compared to Mg-Zn and Mg-Al alloys [1]. Regardless of cast or wrought forms, Mg-Zn and Mg-Al alloys each still remain as the main classes of Mg alloys commercially in use. In the wrought form, the Mg alloys have good strength and ductility. However, wrought Mg-Zn and Mg-Al alloy nanocomposites have often demonstrated simultaneously higher strength and ductility compared to the monolithic alloys [4–14]. Additionally, friction stir processed Mg-Al nanocomposites have also demonstrated higher hardness and strength than the corresponding monolithic alloys [15–18]. Based on much of the existing representative research literature on solidification processed magnesium alloy nanocomposites, good nanoparticle distribution can be achieved in the

References

[1]  M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Novelty, Ohio, USA, 1999.
[2]  J. G. Kaufman, Introduction to Aluminium Alloys and Tempers, ASM International, Materials Park, Ohio, USA, 2000.
[3]  E. F. Emley, Principles of Magnesium Technology, Pergamon Press, Oxford, UK, 1966.
[4]  M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta, “Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles,” Materials Science and Engineering A, vol. 527, no. 1-2, pp. 162–168, 2009.
[5]  M. Paramsothy, S. F. Hassan, N. Q. Bau, N. Srikanth, and M. Gupta, “Selective enhancement of tensile/compressive strength and ductility of AZ31 magnesium alloy via nano-Al2O3 reinforcement integration method alteration,” Materials Science Forum, vol. 618, pp. 423–427, 2009.
[6]  M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta, “Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy az31 using carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 2, pp. 956–964, 2010.
[7]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Carbon nanotube addition to simultaneously enhance strength and ductility of hybrid AZ31/AA5083 alloy,” Materials Sciences & Applications, vol. 2, pp. 20–29, 2011.
[8]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91,” Journal of Alloys and Compounds, vol. 509, no. 28, pp. 7572–7578, 2011.
[9]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles,” Materials Science and Engineering A, vol. 528, no. 21, pp. 6545–6551, 2011.
[10]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “TiC nanoparticle addition to enhance the mechanical response of hybrid magnesium alloy,” Journal of Nanotechnology, vol. 2012, Article ID 401574, 2012.
[11]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 4855–4866, 2011.
[12]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A,” Composites Part A, vol. 42, no. 2, pp. 180–188, 2011.
[13]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles,” Composites Part A, vol. 42, no. 12, pp. 2093–2100, 2011.
[14]  M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement,” Journal of Nanomaterials, vol. 2011, Article ID 642980, 2011.
[15]  Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31,” Materials Science and Engineering A, vol. 433, no. 1-2, pp. 50–54, 2006.
[16]  Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules,” Scripta Materialia, vol. 55, no. 11, pp. 1067–1070, 2006.
[17]  Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing,” Materials Science and Engineering A, vol. 419, no. 1-2, pp. 344–348, 2006.
[18]  C. J. Lee, J. C. Huang, and P. J. Hsieh, “Mg based nano-composites fabricated by friction stir processing,” Scripta Materialia, vol. 54, no. 7, pp. 1415–1420, 2006.
[19]  L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites,” Materials Science and Technology, vol. 15, no. 10, pp. 1139–1146, 1999.
[20]  M. Gupta, M. O. Lai, and S. C. Lim, “Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5 Cu alloy,” Journal of Alloys and Compounds, vol. 260, no. 1-2, pp. 250–255, 1997.
[21]  L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites,” Materials Science and Technology, vol. 15, no. 10, pp. 1139–1146, 1999.
[22]  B. Q. Han and D. C. Dunand, “Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids,” Materials Science and Engineering A, vol. 277, no. 1-2, pp. 297–304, 2000.
[23]  N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures, Vol. 3, Pergamon Materials Series, Pergamon, New York, NY, USA, 1999.
[24]  J. D. Gilchrist, Extraction Metallurgy, Pergamon Press, New York, NY, USA, 3rd edition, 1989.
[25]  M. Gupta, M. O. Lai, and C. Y. Soo, “Effect of type of processing on the micro structural features and mechanical properties of Al-Cu/SiC metal matrix composites,” Materials Science and Engineering A, vol. 210, no. 1-2, pp. 114–122, 1996.
[26]  M. De Cicco, H. Konishi, G. Cao et al., “Strong, ductile magnesium-zinc nanocomposites,” Metallurgical and Materials Transactions A, vol. 40, no. 12, pp. 3038–3045, 2009.
[27]  S. F. Hassan and M. Gupta, “Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg,” Journal of Alloys and Compounds, vol. 419, no. 1-2, pp. 84–90, 2006.
[28]  S. F. Hassan and M. Gupta, “Effect of different types of nano-size oxide participates on microstructural and mechanical properties of elemental Mg,” Journal of Materials Science, vol. 41, no. 8, pp. 2229–2236, 2006.
[29]  S. F. Hassan and M. Gupta, “Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement,” Metallurgical and Materials Transactions A, vol. 36, no. 8, pp. 2253–2258, 2005.
[30]  Z. Száraz, Z. Trojanová, M. Cabbibo, and E. Evangelista, “Strengthening in a WE54 magnesium alloy containing SiC particles,” Materials Science and Engineering A, vol. 462, no. 1-2, pp. 225–229, 2007.
[31]  L. H. Dai, Z. Ling, and Y. L. Bai, “Size-dependent inelastic behavior of particle-reinforced metal-matrix composites,” Composites Science and Technology, vol. 61, no. 8, pp. 1057–1063, 2001.
[32]  D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, UK, 4th edition, 2002.
[33]  T. Laser, C. Hartig, M. R. Nürnberg, D. Letzig, and R. Bormann, “The influence of calcium and cerium mischmetal on the microstructural evolution of Mg—3Al—1Zn during extrusion and resulting mechanical properties,” Acta Materialia, vol. 56, no. 12, pp. 2791–2798, 2008.
[34]  J. Bohlen, S. B. Yi, J. Swiostek, D. Letzig, H. G. Brokmeier, and K. U. Kainer, “Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31,” Scripta Materialia, vol. 53, no. 2, pp. 259–264, 2005.
[35]  S. F. Hassan and M. Gupta, “Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing,” Journal of Alloys and Compounds, vol. 429, no. 1-2, pp. 176–183, 2007.
[36]  S. Namilae and N. Chandra, “Role of atomic scale interfaces in the compressive behavior of carbon nanotubes in composites,” Composites Science and Technology, vol. 66, no. 13, pp. 2030–2038, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133