Micellar liquid chromatography (MLC) is an efficient alternative to conventional reversed-phase liquid chromatography with hydro-organic mobile phases. Almost three decades of experience have resulted in an increasing production of analytical applications. Current concern about the environment also reveals MLC as an interesting technique for “green” chemistry because it uses mobile phases containing 90% or more water. These micellar mobile phases have a low toxicity and are not producing hazardous wastes. The stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to a great variety of interactions (hydrophobic, ionic, and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming in a real alternative in some instances (and a complement in others) to classical RPLC with aqueous-organic mixtures, owing to its peculiar features and unique advantages. The addition of an organic solvent to the mobile phase was, however, soon suggested in order to enhance the low efficiencies and weak elution strength associated with the mobile phases that contained only micelles. 1. Introduction Micellar liquid chromatography (MLC), which uses mobile phases containing a surfactant above its critical micellar concentration (CMC), is an alternative to conventional reversed-phase liquid chromatography and provides a solution to the direct injection of physiological or food samples by solubilising proteins (that are eluted together or shortly after the solvent front) [1–3]. The possibility of directly injecting samples into the chromatograph simplifies and expedites treatment, which confers analytical procedures greater accuracy and a lower cost. The versatility of MLC is due to the wide variety of interactions that are established among the eluted solutes, the stationary phase, the aqueous phase and micelles. Their eluent characteristics allow the analysis of compounds with a wide range of polarities. The presence of a surfactant not only modifies the interactions established inside the column but also reduces the necessary amount of organic solvent in the mobile phase, which can be recycled due to low evaporation. These characteristics are genuinely interesting given current concerns about reducing organic contaminant residues in laboratories. MLC shares the basic components of reversed-phase liquid chromatographic (RPLC) systems, that is, a non-polar stationary
References
[1]
D. W. Armstrong and S. J. Henry, “Use of an aqueous micellar mobile phase for separation of phenols and polynuclear aromatic hydrocarbons via HPLC,” Journal of Liquid Chromatography, vol. 3, no. 5, pp. 657–662, 1980.
[2]
A. Berthod and M. C. García-álvarez-Coque, Micellar Liquid Chromatography, vol. 83 of J. Cazes Ed., Marcel Dekker, New York, NY, USA, 2000.
[3]
M. J. Ruiz-ángel, M. C. Garcia-álvarez-Coque, and A. Berthod, “New insights and recent developments in micellar liquid chromatography,” Separation and Purification Reviews, vol. 38, no. 1, pp. 45–96, 2009.
[4]
M. J. Ruiz-ángel, J. R. Torres-Lapasió, M. C. García-álvarez-Coque, and S. Carda-Broch, “Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes,” Analytical Chemistry, vol. 80, no. 24, pp. 9705–9713, 2008.
[5]
M. J. Ruiz-ángel, J. R. Torres-Lapasió, M. C. García-álvarez-Coque, and S. Carda-Broch, “Submicellar and micellar reversed-phase liquid chromatographic modes applied to the separation of β-blockers,” Journal of Chromatography A, vol. 1216, no. 15, pp. 3199–3209, 2009.
[6]
K. L. Mittal, Ed., Micellization, Solubilization and Microemulsions, vol. 1, Plenum Press, New York, NY, USA, 1979.
[7]
S. López-Grío, J. J. Baeza-Bacza, and M. C. García-Alvarez-Coque, “Influence of the addition of modifiers on solute-micelle interaction in hybrid micellar liquid chromatography,” Chromatographia, vol. 48, no. 9-10, pp. 655–663, 1998.
[8]
V. Pino, C. Yao, and J. L. Anderson, “Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent-water mixtures,” Journal of Colloid and Interface Science, vol. 333, no. 2, pp. 548–556, 2009.
[9]
P. D. Galgano and O. A. El Seoud, “Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants,” Journal of Colloid and Interface Science, vol. 345, no. 1, pp. 1–11, 2010.
[10]
A. Berthod, I. Girard, and C. Gonnet, “Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases,” Analytical Chemistry, vol. 58, no. 7, pp. 1356–1358, 1986.
[11]
M. F. Borgerding and W. L. Hinze, “Characterization and evaluation of the use of nonionic polyoxyethylene(23)dodecanol micellar mobile phases in reversed-phase high-performance liquid chromatography,” Analytical Chemistry, vol. 57, no. 12, pp. 2183–2190, 1985.
[12]
R. C. Murray and G. S. Hartley, “Equilibrium between micelles and simple ions, with particular reference to the solubility of long-chain salts,” Transactions of the Faraday Society, vol. 31, pp. 183–189, 1935.
[13]
P. Sehgal and D. E. Otzen, “Thermodynamics of unfolding of an integral membrane protein in mixed micelles,” Protein Science, vol. 15, no. 4, pp. 890–899, 2006.
[14]
K. Beyer, D. Leine, and A. Blume, “The demicellization of alkyltrimethylammonium bromides in 0.1?M sodium chloride solution studied by isothermal titration calorimetry,” Colloids and Surfaces B: Biointerfaces, vol. 49, no. 1, pp. 31–39, 2006.
[15]
B. Delgado, V. Pino, J. H. Ayala, V. González, and A. M. Afonso, “Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection,” Analytica Chimica Acta, vol. 518, no. 1-2, pp. 165–172, 2004.
[16]
M. J. Ruiz-Angel, R. D. Caballero, E. F. Simó-Alfonso, and M. C. García-Alvarez-Coque, “Micellar liquid chromatography: suitable technique for screening analysis,” Journal of Chromatography A, vol. 947, no. 1, pp. 31–45, 2002.
[17]
S. M. Bryant and K. D. Altria, “An initial assessment of the use of gradient elution in microemulsion and micellar liquid chromatography,” Journal of Separation Science, vol. 27, no. 17-18, pp. 1498–1502, 2004.
[18]
S. Lopez-Grio, M. C. Garcia-Alvarez-Coque, W. L. Hinze, F. H. Quina, and A. Berthod, “Effect of a variety of organic additives on retention and efficiency in micellar liquid chromatography,” Analytical Chemistry, vol. 72, no. 20, pp. 4826–4835, 2000.
[19]
M. F. Borgerding, W. L. Hinze, L. D. Stafford, G. W. Fulp, and W. C. Hamlin, “Investigations of stationary phase modification by the mobile phase surfactant in micellar liquid chromatography,” Analytical Chemistry, vol. 61, no. 13, pp. 1353–1358, 1989.
[20]
A. Berthod, I. Girard, and C. Gonnet, “Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography,” Analytical Chemistry, vol. 58, no. 7, pp. 1362–1367, 1986.
[21]
B. K. Lavine, S. Hendayana, Y. He, and W. T. Cooper, “Solid-state NMR studies of ionic surfactants adsorbed on cyanopropyl bonded phases: implications for micellar liquid chromatography,” Journal of Colloid and Interface Science, vol. 179, no. 2, pp. 341–349, 1996.
[22]
M. J. Ruiz-ángel, S. Carda-Broch, J. R. Torres-Lapasió, and M. C. García-álvarez-Coque, “Retention mechanisms in micellar liquid chromatography,” Journal of Chromatography A, vol. 1216, no. 10, pp. 1798–1814, 2009.
[23]
A. Berthod and A. Roussel, “The r?le of the stationary phase in micellar liquid chromatography. Adsorption and efficiency,” Journal of Chromatography A, vol. 449, pp. 349–360, 1988.
[24]
M. L. Marina, O. Jiménez, M. A. García, and S. Vera, “Study of the separation selectivity of a group of benzene and naphthalene derivatives in micellar liquid chromatography,” Microchemical Journal, vol. 53, no. 2, pp. 215–224, 1996.
[25]
M. J. Ruiz-Angel, S. Carda-Broch, and M. C. García-Alvarez-Coque, “Peak half-width plots to study the effect of organic solvents on the peak performance of basic drugs in micellar liquid chromatography,” Journal of Chromatography A, vol. 1217, no. 11, pp. 1786–1798, 2010.