全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Decision Analysis via Granulation Based on General Binary Relation

DOI: 10.1155/2007/12714

Full-Text   Cite this paper   Add to My Lib

Abstract:

Decision theory considers how best to make decisions in the light of uncertainty about data. There are several methodologies that may be used to determine the best decision. In rough set theory, the classification of objects according to approximation operators can be fitted into the Bayesian decision-theoretic model, with respect to three regions (positive, negative, and boundary region). Granulation using equivalence classes is a restriction that limits the decision makers. In this paper, we introduce a generalization and modification of decision-theoretic rough set model by using granular computing on general binary relations. We obtain two new types of approximation that enable us to classify the objects into five regions instead of three regions. The classification of decision region into five areas will enlarge the range of choice for decision makers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133