|
Two behavioural traits promote fine-scale species segregation and moderate hybridisation in a recovering sympatric fur seal populationAbstract: We found virtually complete spatial segregation of the parental species, with only one exception; a single territory that contained adults of both species and also the highest concentration of hybrid pups. The spatial distribution of each species was closely linked to habitat type (pebbled vs boulder beaches), with members of each species breeding almost exclusively on one type or the other but hybrids breeding on both or at the junction between habitats. Inter-annual site fidelity was high for both sexes of pure-species adults, with 66% of females and all males returning to the same territory or a neighbouring one in different years. An important consequence for pure females of breeding on the 'wrong' habitat type, and thus in a heterospecific aggregation, was the production of hybrid pups. Low habitat fidelity of hybrid females facilitated bi-directional backcrossing, resulting in more diverse hybrid offspring.In a disturbed system where two sympatric fur seal species breed in close proximity, discrete gene pools are retained by extremely fine-scale and strong spatial segregation of the species. Two behavioural traits were found to be important in maintaining this stable population structure, and habitat type was a strong indicator of where species locate and a potentially powerful predictor of future directions of hybridisation. A direct consequence of the breakdown of this trait was the production of hybrid offspring, which may have severe implications if hybrids have reduced fitness.Secondary contact between previously isolated species can result in hybridisation unless mechanisms are in place to prevent it. Outcomes of this depend on the fitness of hybrids relative to parental species, as well as behavioural and ecological attributes that contribute to the maintenance of species boundaries [1,2]. In systems where human-induced disturbance has resulted in sympatry, exploring factors that influence interspecific gene flow is important for understanding populatio
|