全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A geographic cline induced by negative frequency-dependent selection

DOI: 10.1186/1471-2148-11-256

Full-Text   Cite this paper   Add to My Lib

Abstract:

We found a large-scale latitudinal cline in the morph frequency: andromorph frequency ranged from 0.05 (South) to 0.79 (North). Based on the empirical data on the numbers of eggs, the number of ovariole, abdomen length and latitude, the potential fitness of andromorphs was estimated to be lower than that of gynomorphs in the south, and higher in the north, suggesting the gene-by-environment interaction. From the morph-specific latitudinal cline in potential fitness, the frequency of andromorphs was expected to shift from 0 to 1 without NFDS, because a morph with higher potential fitness wins completely and the two morphs will switch at some point. In contrast, NFDS led to the coexistence of two morphs with different potential fitness in a certain geographic range along latitude due to rare morph advantage, and resulted in a smooth geographic cline of morph frequency.Our results provide suggestive evidence that the combination of NFDS and gene-by-environment interaction, i.e., multi-selection pressure on color morphs, can explain the geographic cline in morph frequency in the current system.Patterns of geographic variation in phenotypes and genotypes may provide evidence for selection [1-4]. Geographic clines in quantitative traits caused by environmental gradients have been reported for many species [2,5]. Those are typically smooth due to gradual changes in selection in relation to environmental factors such as temperature [2]. Clines are also observed in morph (or allele) frequencies in species with genetic polymorphisms in both natural and laboratory systems [3,6]. In these cases, the fitness advantage of each morph differentially changes with environmental gradient (i.e., gene-by-environment interaction), and reverses across an equilibrium (balancing) point, where each phenotype has equal fitness [6]. Then, theoretically, morph frequency is expected to show a steep cline (stepwise pattern) across an equilibrium point in the absence of other evolutionary forces a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133