The use of Ultra Performance Liquid Chromatography (UPLC), with a rapid 5-minute reversed phase isocratic separation on a 1.7?μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for tramadol hydrochloride (TMH) is demonstrated. A simple, precise and accurate stability-indicating isocratic UPLC method was developed for the determination of TMH in bulk drug and in its tablets. The method was developed using Waters Aquity BEH C18 column (100?mm 2.1?mm, 1.7?μm) with mobile phase consisting of a mixture of potassium dihydrogen phosphate buffer of pH 2.8 and an equal volume of acetonitrile (60?:?40?v/v). The eluted compound was detected at 226?nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–300?μg?mL?1 TMH with regression coefficient (r) value of 0.9999. The limit of detection (S/N ) was 0.08?μg?mL?1 and the limit of quantification (S/N ) was 0.2?μg?mL?1. Forced degradation of the bulk sample was conducted an accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal and photolytic degradation were used to assess the stability indicating power of the method. TMH was found to degrade significantly in acidic, basic and oxidative stress conditions and stable in thermal, hydrolytic and photolytic conditions. 1. Introduction Tramadol hydrochloride (TMH), chemically known as (1R,2R)-rel-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol (Figure 1), is a synthetic analogue of codeine and is a centrally acting analgesic agent [1]. It is metabolized by the cytochrome P450 enzyme system in the liver to form eleven metabolites of which o-desmethyltramadol (M1) predominates and has analgesic properties [2]. It has been used since 1977 for the relief of severe physical pain and has been the most widely sold opioid analgesic drug in the world [3]. TMH is official in European Pharmacopeia (EP) [4] which describe nonaqueous titration with perchloric acid as titrant the end point being located potentiometrically. Ultraviolet spectrophotometry [5, 6], high-performance liquid chromatography [6–9], thin layer chromatography-densitometry [10], capillary isotachophoresis [11], flow injection chemiluminescence spectrometry [12], voltametry [13–15], ion-selective-based potentiometry [16–22], visible spectrophotometry [23–28], and titrimetry [26, 29] for determining TMH in pharmaceutical dosage forms. Figure 1 In addition, there have been reports of its assay when present in combination with other drugs. TDH and ibuprofen were assayed
References
[1]
G. Grosa, E. D. Grosso, R. Russo, and G. Allegrone, “Simultaneous, stability indicating, HPLC-DAD determination of guaifenesin and methyl and propyl-parabens in cough syrup,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 3, pp. 798–803, 2006.
[2]
K. Budd and R. Langford, “Tramadol revisited,” British Journal of Anaesthesia, vol. 82, no. 4, pp. 493–495, 1999.
[3]
P. Dayer, J. Desmeules, and L. Collart, “The pharmacology of tramadol,” Drugs, vol. 53, no. 2, pp. 18–24, 1997.
[4]
European Pharmacopoeia, Strasbourg, Council of Europe, vol. 6.0, pp.3104–3105, 2008.
[5]
F. W. Mang, W. Liu, and J. N. Y. Ang, “Ultra-violet spectrophotometric analysis of tramadol hydrochloride injections,” Yaowu Fenxi Zazhi, vol. 14, article 42, 1994.
[6]
A. Kü?ük and Y. Kadio?lu, “Determination of tramadol hydrochloride in ampoule dosage forms by using UV spectrophotometric and HPLC-DAD methods in methanol and water media,” Il Farmaco, vol. 60, no. 2, pp. 163–169, 2005.
[7]
W. F. Kartinasari, T. Palupi, and G. Indrayanto, “HPLC determination and validation of tramadol hydrochloride in capsules,” Journal of Liquid Chromatography and Related Technologies, vol. 27, no. 4, pp. 737–744, 2004.
[8]
I. Y. Zaghloul and M. A. Radwan, “High performance liquid chromatographic determination of tramadol in pharmaceutical dosage forms,” Journal of Liquid Chromatography and Related Technologies, vol. 20, no. 5, pp. 779–787, 1997.
[9]
Y. L. Zhong, “Determination of the content of tramadol hydrochloride sustained-release tablets,” Yaowu Fenxi Zazhi, vol. 17, pp. 279–280, 1997.
[10]
J. Krzek and M. Starek, “Quality assessment for tramadol in pharmaceutical preparations with thin layer chromatography and densitometry,” Biomedical Chromatography, vol. 18, no. 8, pp. 589–599, 2004.
[11]
M. Pospí?ilová, M. Polá?ek, and V. Jokl, “Determination of tramadol in various dosage forms by capillary isotachophoresis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 18, no. 4-5, pp. 777–783, 1998.
[12]
J. K. Zhang, J. G. Li, and Y. F. Tu, “Flow injection chemiluminescence determination of tramadol hydrochloride,” Fenxi Kexue Xuebao, vol. 25, pp. 173–176, 2009.
[13]
F. Ghorbani-Bidkorbeh, S. Shahrokhian, A. Mohammadi, and R. Dinarvand, “Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode,” Electrochimica Acta, vol. 55, no. 8, pp. 2752–2759, 2010.
[14]
E. M. P. J. Garrido, J. M. P. J. Garrido, F. Borges, and C. Delerue-Matos, “Development of electrochemical methods for determination of tramadol—analytical application to pharmaceutical dosage forms,” Journal of Pharmaceutical and Biomedical Analysis, vol. 32, no. 4-5, pp. 975–981, 2003.
[15]
P. Norouzi, R. Dinarvand, M. R. Ganjali, and A. S. E. Meibodi, “Application of adsorptive stripping voltammetry for the nano-level detection of tramadol in biological fluids and tablets using fast fourier transform continuous cyclic voltammetry at an au microelectrode in a flowing system,” Analytical Letters, vol. 40, no. 11, pp. 2252–2270, 2007.
[16]
M. R. Ganjali, Z. Memari, F. Faridbod, R. Dinarvand, and P. Norouzi, “Sm3+ potentiometric membrane sensor as a probe for determination of some pharmaceutics,” Electroanalysis, vol. 20, no. 24, pp. 2663–2670, 2008.
[17]
Y. J. Wu, J. Shi, J. H. Zhang, K. L. Zhao, and Z. P. Zhang, “Preparation and application of an ion-selective electrode by tramadol hydrochloride,” Fenxi shiyanshi, vol. 24, pp. 49–51, 2005.
[18]
C. L. Huang, R. Xiu, Q. X. Dong, X. Z. Chen, and H. Q. You, “Preparation of a PVC membrane tramadol ion-selective electrode based on gel quinhydrone internal reference electrode,” Fenxi Ceshi Xuebao, vol. 24, pp. 35–38, 2005.
[19]
C. L. Huang, R. Xiu, Z. Y. Liu, Y. C. Li, and C. J. Meng, “Preparation and application of a doubly coated membrane tramadol ion-selective electrode based on Ag/AgCl wire,” Fenxi Kexue Xuebao, vol. 21, pp. 48–50, 2005.
[20]
M. Wang, Y. Long, D. Li, W. Zhou, G. Zhao, and Z. Zhang, “Preparation of polyvinyl chloride membrane ofloxacin and tramadol selective electrode and its application,” Fenxi Huàxué, vol. 25, no. 4, pp. 450–451, 1997.
[21]
H. Hopkala, G. Misztal, and A. Wieczorek, “Tramadol selective PVC membrane electrodes and their analytical application,” Pharmazie, vol. 53, no. 12, pp. 869–871, 1998.
[22]
J. Yue, Q. Yu, D. Li, G. Zhao, W. Shi, and L. An, “Preparation and application of polyvinyl chloride membrane-tramadol selective electrode,” Fenxi Huàxué, vol. 28, no. 1, pp. 84–86, 2000.
[23]
R. J. Sadhana and P. D. Trivedi, “Assay of tramadol hydrochloride by spectrophotometry,” Indian Drugs, vol. 38, no. 2, pp. 100–101, 2001.
[24]
H. E. Abdellatef, M. M. El-Henawee, H. M. El-Sayed, and M. M. Ayad, “Spectrophotometric and spectrofluorimetric methods for analysis of tramadol, acebutolol and dothiepin in pharmaceutical preparations,” Spectrochimica Acta—Part A, vol. 65, no. 5, pp. 1087–1092, 2006.
[25]
H. E. Abdellatef, “Kinetic spectrophotometric determination of tramadol hydrochloride in pharmaceutical formulation,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 5, pp. 835–842, 2002.
[26]
K. B. Vinay, H. D. Revanasiddappa, N. Rajendraprasad et al., “Rapid titrimetric and spectrophotometric assay of tramadol in bulk drug and in formulation using N-bromosuccinimide and methyl orange as reagents,” Thai Journal of Pharmaceutical Sciences, vol. 35, no. 1, pp. 8–17, 2011.
[27]
K. B. Vinay, H. D. Revanasiddappa, M. R. Divya, N. Rajendra Prasad, and K. Basavaiah, “Sensitive spectrophotometric assay of tramadol in pharmaceuticals using N-bromosuccinimide and indigocaramine,” Proceedings of Indian National Academy Science, vol. 76, no. 2, pp. 71–79, 2010.
[28]
K. B. Vinay, H. D. Revanasiddappa, N. Rajendraprasad, P. J. Ramesh, Xavier Cijo M., and K. Basavaiah, “Use of two sulfonthalein dyes in the extraction-free spectrophotometric assay of tramadol in dosage forms and in spiked human urine based on ion-pair reaction,” Drug Testing and Analysis, vol. 4, no. 2, pp. 116–122, 2012.
[29]
K. Basavaiah, M. R. Divya, N. Rajendra Prasad, P. J. Ramesh, C. M. Xavier, and K. B. Vinay, “Determination of tramadol HCl and its preparations by acid-base titrimetry in non aqueous medium,” Journal of Preclinical Clinical Research, vol. 4, no. 1, pp. 19–23, 2010.
[30]
A. B. Thomas, N. G. Dumbre, R. K. Nanda, L. P. Kothapalli, A. A. Chaudhari, and A. D. Deshpande, “Simultaneous determination of tramadol and ibuprofen in pharmaceutical preparations by first order derivative spectrophotometric and LC methods,” Chromatographia, vol. 68, no. 9-10, pp. 843–847, 2008.
[31]
A. Satmeron-Garcia, E. Lopez-lopez, E. Roman, J. Carbeza, N. Navas, and L.-F. Capitan-Vally, “Development of an LC-DAD method for analysis of dexketoprafen, tramadol and haloperidol, Study of the stability of mixtures for patient -controlled analgesia,” Chromatographia, vol. 68, no. 9-10, pp. 762–772, 2008.
[32]
P. K. Kachhadia, A. S. Doshi, V. R. Ram, and H. S. Joshi, “Validated LC method for simultaneous analysis of tramadol hydrochloride and aceclofenac in a commercial tablet,” Chromatographia, vol. 68, no. 11-12, pp. 997–1001, 2008.
[33]
K. Karunakaran, G. Navaneethan, and K. P. Elango, “Development and validation of a stability-indicating RP-HPLC method for simultaneous determination of paracetamol, tramadol HCL and domperidone in a combined dosage form,” Tropical Journal of Pharmaceutical Research, vol. 11, pp. 99–106, 2012.
[34]
S. Singh, B. Singh, R. Bahuguna, L. Wadhwa, and R. Saxena, “Stress degradation studies on ezetimibe and development of a validated stability-indicating HPLC assay,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 3, pp. 1037–1040, 2006.
[35]
A. Mohammadi, I. Haririan, N. Rezanour, L. Ghiasi, and R. B. Walker, “A stability-indicating high performance liquid chromatographic assay for the determination of orlistat in capsules,” Journal of Chromatography A, vol. 1116, no. 1-2, pp. 153–157, 2006.
[36]
I. Ivana, Z. Ljiljana, and Z. Mira, “A stability indicating assay method for cefuroxime axetil and its application to analysis of tablets exposed to accelerated stability test conditions,” Journal of Chromatography A, vol. 1119, no. 1-2, pp. 209–215, 2006.
[37]
K. Basavaiah, N. Rajendraprasad, M. X. Cijo, K. B. Vinay, and P. J. Ramesh, “Development and validation of stability indicating spectrophotometric methods for determination of oxcarbazepine in pharmaceuticals,” Journal of Scientific and Industrial Research, vol. 70, no. 5, pp. 346–351, 2011.
[38]
International Conference on Harmonization Q1A (R2), “Stability testing of new drug substances and products. International conference on harmonization,” IFPMA, Geneva, Swziterland, 2006.
[39]
A. Mohammadi, S. Nojavan, M. Rouini, and A. R. Fakhari, “Stability evaluation of tramadol enantiomers using a chiral stability-indicating capillary electrophoresis method and its application to pharmaceutical analysis,” Journal of Separation Science, vol. 34, no. 13, pp. 1613–1620, 2011.
[40]
V. D. Gupta, “Chemical stability of tramadol hydrochloride injection,” International Journal of Pharmaceutical Compounding, vol. 12, no. 2, pp. 161–162, 2008.
[41]
L. Nováková, L. Matysová, and P. Solich, “Advantages of application of UPLC in pharmaceutical analysis,” Talanta, vol. 68, no. 3, pp. 908–918, 2006.
[42]
R. Verplaetse and J. Tytgat, “Development and validation of a sensitive UPLC-MS/MS method for the analysis of narcotic analgesics in urine and whole blood in forensic context,” Forensic Science International, 2011.
[43]
B. Kasprzyk-Hordern, R. M. Dinsdale, and A. J. Guwy, “Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry,” Journal of Chromatography A, vol. 1161, no. 1-2, pp. 132–145, 2007.
[44]
N. Badawi, K. W. Simonsen, A. Steentoft, I. M. Bernhoft, and K. Linnet, “Simultaneous screening and quantification of 29 drugs of abuse in oral fluid by solid-phase extraction and ultraperformance LC-MS/MS,” Clinical Chemistry, vol. 55, no. 11, pp. 2004–2018, 2009.
[45]
D. R. Baker and B. Kasprzyk-Hordern, “Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry,” Journal of Chromatography A, vol. 1218, no. 12, pp. 1620–1631, 2011.