From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA) annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX) amplification technology or the glutamine synthetase (GS) system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.
Kim, J.Y.; Kim, Y.G.; Lee, G.M. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl. Microbiol. Biotechnol. 2012, 93, 917–930, doi:10.1007/s00253-011-3758-5.
[3]
Ghaderi, D.; Zhang, M.; Hurtado-Ziola, N.; Varki, A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 2012, 28, 147–175.
[4]
Wiberg, F.C.; Rasmussen, S.K.; Frandsen, T.P.; Rasmussen, L.K.; Tengbjerg, K.; Coljee, V.W.; Sharon, J.; Yang, C.Y.; Bregenholt, S.; Nielsen, L.S.; et al. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol. Bioeng. 2006, 94, 396–405, doi:10.1002/bit.20865.
[5]
TOP 30 Biologics 2011. Available online: http://www.pipelinereview.com/index.php/archive/view/listid-1-la-merie-daily/mailid-35-La-Merie-Daily-TOP-30-Biologics-2011-new-free-report/tmpl-component (Accessed on 16 April 2013).
[6]
Lanthier, M.; Behrman, R.; Nardinelli, C. Economic issues with follow-on protein products. Nat. Rev. Drug Discov. 2008, 7, 733–737, doi:10.1038/nrd2636.
[7]
Kaufman, R.J.; Sharp, P.A. Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary dna gene. J. Mol. Biol. 1982, 159, 601–621, doi:10.1016/0022-2836(82)90103-6.
[8]
Chu, L.; Robinson, D.K. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 2001, 12, 180–187, doi:10.1016/S0958-1669(00)00197-X.
[9]
Bebbington, C.R.; Renner, G.; Thomson, S.; King, D.; Abrams, D.; Yarranton, G.T. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 1992, 10, 169–175.
[10]
Browne, S.M.; Al-Rubeai, M. Selection methods for high-producing mammalian cell lines. Trends Biotechnol. 2007, 25, 425–432, doi:10.1016/j.tibtech.2007.07.002.
[11]
Wigler, M.; Perucho, M.; Kurtz, D.; Dana, S.; Pellicer, A.; Axel, R.; Silverstein, S. Transformation of mammalian cells with an amplifiable dominant-acting gene. Proc. Natl. Acad. Sci. USA 1980, 77, 3567–3570, doi:10.1073/pnas.77.6.3567.
[12]
Urlaub, G.; Chasin, L.A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 1980, 77, 4216–4220, doi:10.1073/pnas.77.7.4216.
[13]
Liu, P.Q.; Chan, E.M.; Cost, G.J.; Zhang, L.; Wang, J.; Miller, J.C.; Guschin, D.Y.; Reik, A.; Holmes, M.C.; Mott, J.E.; et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol. Bioeng. 2010, 106, 97–105.
[14]
Lonza launches next generation GS gene expression system. Available online: http://www.lonza.com/about-lonza/media-center/news/2012/120710-GS-System-e.aspx (Accessed on 15 February 2013).
Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108, 193–199, doi:10.1016/0378-1119(91)90434-D.
[17]
Sautter, K.; Enenkel, B. Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol. Bioeng. 2005, 89, 530–538, doi:10.1002/bit.20374.
[18]
Wurtele, H.; Little, K.C.; Chartrand, P. Illegitimate DNA integration in mammalian cells. Gene Ther. 2003, 10, 1791–1799, doi:10.1038/sj.gt.3302074.
[19]
West, A.G.; Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 2005, 14, R101–R111, doi:10.1093/hmg/ddi104.
[20]
Wurm, F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398, doi:10.1038/nbt1026.
[21]
Davies, S.L.; Lovelady, C.S.; Grainger, R.K.; Racher, A.J.; Young, R.J.; James, D.C. Functional heterogeneity and heritability in CHO cell populations. Biotechnol. Bioeng. 2013, 110, 260–274, doi:10.1002/bit.24621.
[22]
Pilbrough, W.; Munro, T.P.; Gray, P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 2009, 4, e8432, doi:10.1371/journal.pone.0008432.
[23]
Derouazi, M.; Martinet, D.; Besuchet Schmutz, N.; Flaction, R.; Wicht, M.; Bertschinger, M.; Hacker, D.L.; Beckmann, J.S.; Wurm, F.M. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem. Biophys. Res. Commun. 2006, 340, 1069–1077, doi:10.1016/j.bbrc.2005.12.111.
[24]
Lattenmayer, C.; Loeschel, M.; Schriebl, K.; Steinfellner, W.; Sterovsky, T.; Trummer, E.; Vorauer-Uhl, K.; Muller, D.; Katinger, H.; Kunert, R. Protein-free transfection of CHO host cells with an IgG-fusion protein: Selection and characterization of stable high producers and comparison to conventionally transfected clones. Biotechnol. Bioeng. 2007, 96, 1118–1126, doi:10.1002/bit.21183.
[25]
Kim, S.J.; Kim, N.S.; Ryu, C.J.; Hong, H.J.; Lee, G.M. Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 1998, 58, 73–84.
[26]
Kim, N.S.; Byun, T.H.; Lee, G.M. Key determinants in the occurrence of clonal variation in humanized antibody expression of cho cells during dihydrofolate reductase mediated gene amplification. Biotechnol. Prog. 2001, 17, 69–75.
[27]
Kaufman, R.J.; Wasley, L.C.; Spiliotes, A.J.; Gossels, S.D.; Latt, S.A.; Larsen, G.R.; Kay, R.M. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 1985, 5, 1750–1759.
[28]
Chusainow, J.; Yang, Y.S.; Yeo, J.H.; Toh, P.C.; Asvadi, P.; Wong, N.S.; Yap, M.G. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol. Bioeng. 2009, 102, 1182–1196, doi:10.1002/bit.22158.
[29]
Fussenegger, M.; Bailey, J.E.; Hauser, H.; Mueller, P.P. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 1999, 17, 35–42, doi:10.1016/S0167-7799(98)01248-7.
[30]
Baird, S.D.; Turcotte, M.; Korneluk, R.G.; Holcik, M. Searching for IRES. RNA 2006, 12, 1755–1785, doi:10.1261/rna.157806.
[31]
Ho, S.C.; Bardor, M.; Feng, H.; Mariati; Tong, Y.W.; Song, Z.; Yap, M.G.; Yang, Y. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. J. Biotechnol. 2012, 157, 130–139.
[32]
Trill, J.J.; Shatzman, A.R.; Ganguly, S. Production of monoclonal antibodies in COS and CHO cells. Curr. Opin. Biotechnol. 1995, 6, 553–560, doi:10.1016/0958-1669(95)80092-1.
Kaufman, R.J.; Davies, M.V.; Wasley, L.C.; Michnick, D. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res. 1991, 19, 4485–4490, doi:10.1093/nar/19.16.4485.
[35]
Rees, S.; Coote, J.; Stables, J.; Goodson, S.; Harris, S.; Lee, M.G. Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques 1996, 20, 102–104, 106, 108–110.
[36]
Gurtu, V.; Yan, G.; Zhang, G. IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun. 1996, 229, 295–298, doi:10.1006/bbrc.1996.1795.
[37]
Kolb, A.F.; Siddell, S.G. Expression of a recombinant monoclonal antibody from a bicistronic mRNA. Hybridoma 1997, 16, 421–426, doi:10.1089/hyb.1997.16.421.
[38]
Novo, J.B.; Morganti, L.; Moro, A.M.; Paes Leme, A.F.; Serrano, S.M.; Raw, I.; Ho, P.L. Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. J. Biomed. Biotechnol. 2012, 2012, 875383.
[39]
Ng, S.K.; Tan, T.R.; Wang, Y.; Ng, D.; Goh, L.T.; Bardor, M.; Wong, V.V.; Lam, K.P. Production of Functional Soluble Dectin-1 Glycoprotein Using an IRES-Linked Destabilized-Dihydrofolate Reductase Expression Vector. PLoS One 2012, 7, e52785.
[40]
Gross, G.; Hauser, H. Heterologous expression as a tool for gene identification and analysis. J. Biotechnol. 1995, 41, 91–110, doi:10.1016/0168-1656(95)00070-7.
[41]
Westwood, A.D.; Rowe, D.A.; Clarke, H.R. Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid. Biotechnol. Prog. 2010, 26, 1558–1566, doi:10.1002/btpr.491.
[42]
Ng, S.K.; Wang, D.I.; Yap, M.G. Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab. Eng. 2007, 9, 304–316, doi:10.1016/j.ymben.2007.01.001.
[43]
Mirkovitch, J.; Mirault, M.E.; Laemmli, U.K. Organization of the higher-order chromatin loop: Specific DNA attachment sites on nuclear scaffold. Cell 1984, 39, 223–232, doi:10.1016/0092-8674(84)90208-3.
[44]
Jost, J.P.; Oakeley, E.J.; Zhu, B.; Benjamin, D.; Thiry, S.; Siegmann, M.; Jost, Y.C. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res. 2001, 29, 4452–4461, doi:10.1093/nar/29.21.4452.
[45]
Zhu, B.; Benjamin, D.; Zheng, Y.; Angliker, H.; Thiry, S.; Siegmann, M.; Jost, J.P. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc. Natl. Acad. Sci. USA 2001, 98, 5031–5036.
[46]
Girod, P.A.; Nguyen, D.Q.; Calabrese, D.; Puttini, S.; Grandjean, M.; Martinet, D.; Regamey, A.; Saugy, D.; Beckmann, J.S.; Bucher, P.; et al. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat. Methods 2007, 4, 747–753, doi:10.1038/nmeth1076.
[47]
Bell, A.C.; West, A.G.; Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 1999, 98, 387–396, doi:10.1016/S0092-8674(00)81967-4.
[48]
Bidwell, J.P.; Torrungruang, K.; Alvarez, M.; Rhodes, S.J.; Shah, R.; Jones, D.R.; Charoonpatrapong, K.; Hock, J.M.; Watt, A.J. Involvement of the nuclear matrix in the control of skeletal genes: The NMP1 (YY1), NMP2 (Cbfa1), and NMP4 (Nmp4/CIZ) transcription factors. Crit. Rev. Eukaryot. Gene Expr. 2001, 11, 279–297.
[49]
Girod, P.A.; Zahn-Zabal, M.; Mermod, N. Use of the chicken lysozyme 5' matrix attachment region to generate high producer CHO cell lines. Biotechnol. Bioeng. 2005, 91, 1–11, doi:10.1002/bit.20563.
[50]
Kim, J.M.; Kim, J.S.; Park, D.H.; Kang, H.S.; Yoon, J.; Baek, K.; Yoon, Y. Improved recombinant gene expression in CHO cells using matrix attachment regions. J. Biotechnol. 2004, 107, 95–105.
[51]
Kim, J.D.; Yoon, Y.; Hwang, H.Y.; Park, J.S.; Yu, S.; Lee, J.; Baek, K.; Yoon, J. Efficient selection of stable chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element. Biotechnol. Prog. 2005, 21, 933–937.
[52]
Zahn-Zabal, M.; Kobr, M.; Girod, P.A.; Imhof, M.; Chatellard, P.; de Jesus, M.; Wurm, F.; Mermod, N. Development of stable cell lines for production or regulated expression using matrix attachment regions. J. Biotechnol. 2001, 87, 29–42.
[53]
Benton, T.; Chen, T.; McEntee, M.; Fox, B.; King, D.; Crombie, R.; Thomas, T.C.; Bebbington, C. The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology 2002, 38, 43–46.
[54]
De Poorter, J.J.; Lipinski, K.S.; Nelissen, R.G.; Huizinga, T.W.; Hoeben, R.C. Optimization of short-term transgene expression by sodium butyrate and ubiquitous chromatin opening elements (UCOEs). J. Gene Med. 2007, 9, 639–648, doi:10.1002/jgm.1057.
[55]
Ye, J.; Alvin, K.; Latif, H.; Hsu, A.; Parikh, V.; Whitmer, T.; Tellers, M.; de la Cruz Edmonds, M.C.; Ly, J.; Salmon, P.; Markusen, J.F. Rapid protein production using CHO stable transfection pools. Biotechnol. Prog. 2010, 26, 1431–1437, doi:10.1002/btpr.469.
[56]
Jia, Q.; Wu, H.; Zhou, X.; Gao, J.; Zhao, W.; Aziz, J.; Wei, J.; Hou, L.; Wu, S.; Zhang, Y.; et al. A “GC-rich” method for mammalian gene expression: A dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci. China Life Sci. 2010, 53, 94–100, doi:10.1007/s11427-010-0003-x.
[57]
Cao, H.; Widlund, H.R.; Simonsson, T.; Kubista, M. TGGA repeats impair nucleosome formation. J. Mol. Biol. 1998, 281, 253–260, doi:10.1006/jmbi.1998.1925.
[58]
Lowary, P.T.; Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 1998, 276, 19–42, doi:10.1006/jmbi.1997.1494.
[59]
Levitsky, V.G. RECON: A program for prediction of nucleosome formation potential. Nucleic Acids Res. 2004, 32, W346–W349, doi:10.1093/nar/gkh482.
[60]
Huang, Y.; Li, Y.; Wang, Y.G.; Gu, X.; Wang, Y.; Shen, B.F. An efficient and targeted gene integration system for high-level antibody expression. J. Immunol. Methods 2007, 322, 28–39, doi:10.1016/j.jim.2007.01.022.
[61]
Little, P. Genetics. Small and perfectly formed. Nature 1993, 366, 204–205, doi:10.1038/366204a0.
[62]
Branda, C.S.; Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 2004, 6, 7–28, doi:10.1016/S1534-5807(03)00399-X.
[63]
Groth, A.C.; Fish, M.; Nusse, R.; Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 2004, 166, 1775–1782, doi:10.1534/genetics.166.4.1775.
[64]
Golic, M.M.; Rong, Y.S.; Petersen, R.B.; Lindquist, S.L.; Golic, K.G. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 1997, 25, 3665–3671, doi:10.1093/nar/25.18.3665.
[65]
Voziyanov, Y.; Pathania, S.; Jayaram, M. A general model for site-specific recombination by the integrase family recombinases. Nucleic Acids Res. 1999, 27, 930–941, doi:10.1093/nar/27.4.930.
[66]
Wirth, D.; Gama-Norton, L.; Riemer, P.; Sandhu, U.; Schucht, R.; Hauser, H. Road to precision: Recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 2007, 18, 411–419, doi:10.1016/j.copbio.2007.07.013.
[67]
O’Gorman, S.; Fox, D.T.; Wahl, G.M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 1991, 251, 1351–1355.
[68]
Voziyanov, Y.; Konieczka, J.H.; Stewart, A.F.; Jayaram, M. Stepwise manipulation of DNA specificity in Flp recombinase: Progressively adapting Flp to individual and combinatorial mutations in its target site. J. Mol. Biol. 2003, 326, 65–76, doi:10.1016/S0022-2836(02)01364-5.
[69]
Kito, M.; Itami, S.; Fukano, Y.; Yamana, K.; Shibui, T. Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 2002, 60, 442–448, doi:10.1007/s00253-002-1134-1.
[70]
Kameyama, Y.; Kawabe, Y.; Ito, A.; Kamihira, M. An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange. Biotechnol. Bioeng. 2010, 105, 1106–1114.
[71]
Smith, M.C.; Thorpe, H.M. Diversity in the serine recombinases. Mol. Microbiol. 2002, 44, 299–307, doi:10.1046/j.1365-2958.2002.02891.x.
Campbell, M.; Corisdeo, S.; McGee, C.; Kraichely, D. Utilization of site-specific recombination for generating therapeutic protein producing cell lines. Mol. Biotechnol. 2010, 45, 199–202, doi:10.1007/s12033-010-9266-5.
[74]
Kennard, M.L. Engineered mammalian chromosomes in cellular protein production: Future prospects. Methods Mol. Biol. 2011, 738, 217–238, doi:10.1007/978-1-61779-099-7_15.
[75]
Kennard, M.L.; Goosney, D.L.; Monteith, D.; Zhang, L.; Moffat, M.; Fischer, D.; Mott, J. The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol. Bioeng. 2009, 104, 540–553, doi:10.1002/bit.22406.
[76]
Dejong, G.; Telenius, A.H.; Telenius, H.; Perez, C.F.; Drayer, J.I.; Hadlaczky, G. Mammalian artificial chromosome pilot production facility: Large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 1999, 35, 129–133, doi:10.1002/(SICI)1097-0320(19990201)35:2<129::AID-CYTO4>3.0.CO;2-A.
[77]
Cost, G.J.; Freyvert, Y.; Vafiadis, A.; Santiago, Y.; Miller, J.C.; Rebar, E.; Collingwood, T.N.; Snowden, A.; Gregory, P.D. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol. Bioeng. 2010, 105, 330–340, doi:10.1002/bit.22541.
[78]
Hwang, S.O.; Lee, G.M. Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. J. Biotechnol. 2009, 139, 89–94, doi:10.1016/j.jbiotec.2008.09.008.
[79]
Dreesen, I.A.; Fussenegger, M. Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of chinese hamster ovary cells. Biotechnol. Bioeng. 2011, 108, 853–866, doi:10.1002/bit.22990.
[80]
Astley, K.; Al-Rubeai, M. The role of Bcl-2 and its combined effect with p21CIP1 in adaptation of CHO cells to suspension and protein-free culture. Appl. Microbiol. Biotechnol. 2008, 78, 391–399, doi:10.1007/s00253-007-1320-2.
[81]
Zhou, M.; Crawford, Y.; Ng, D.; Tung, J.; Pynn, A.F.; Meier, A.; Yuk, I.H.; Vijayasankaran, N.; Leach, K.; Joly, J.; et al. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. J. Biotechnol. 2011, 153, 27–34.
[82]
Peng, R.W.; Abellan, E.; Fussenegger, M. Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2011, 108, 611–620.
[83]
Datta, P.; Linhardt, R.J.; Sharfstein, S.T. An 'omics approach towards CHO cell engineering. Biotechnol. Bioeng. 2013, 110, 1255–1271, doi:10.1002/bit.24841.
[84]
Mohan, C.; Kim, Y.G.; Koo, J.; Lee, G.M. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol. J. 2008, 3, 624–630, doi:10.1002/biot.200700249.
[85]
Becker, E.; Florin, L.; Pfizenmaier, K.; Kaufmann, H. Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells. J. Biotechnol. 2010, 146, 198–206, doi:10.1016/j.jbiotec.2009.11.018.
[86]
Shaffer, A.L.; Shapiro-Shelef, M.; Iwakoshi, N.N.; Lee, A.H.; Qian, S.B.; Zhao, H.; Yu, X.; Yang, L.; Tan, B.K.; Rosenwald, A.; et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 2004, 21, 81–93, doi:10.1016/j.immuni.2004.06.010.
[87]
Miller, J.C.; Tan, S.; Qiao, G.; Barlow, K.A.; Wang, J.; Xia, D.F.; Meng, X.; Paschon, D.E.; Leung, E.; Hinkley, S.J.; et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011, 29, 143–148.
[88]
Mussolino, C.; Cathomen, T. TALE nucleases: Tailored genome engineering made easy. Curr. Opin. Biotechnol. 2012, 23, 644–650, doi:10.1016/j.copbio.2012.01.013.
[89]
Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326, 1501, doi:10.1126/science.1178817.
[90]
Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326, 1509–1512, doi:10.1126/science.1178811.
[91]
Miller, J.C.; Holmes, M.C.; Wang, J.; Guschin, D.Y.; Lee, Y.L.; Rupniewski, I.; Beausejour, C.M.; Waite, A.J.; Wang, N.S.; Kim, K.A.; et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007, 25, 778–785, doi:10.1038/nbt1319.
[92]
Fan, L.; Kadura, I.; Krebs, L.E.; Hatfield, C.C.; Shaw, M.M.; Frye, C.C. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol. Bioeng. 2012, 109, 1007–1015, doi:10.1002/bit.24365.
[93]
Chevalier, B.S.; Stoddard, B.L. Homing endonucleases: Structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001, 29, 3757–3774, doi:10.1093/nar/29.18.3757.
[94]
Cabaniols, J.P.; Ouvry, C.; Lamamy, V.; Fery, I.; Craplet, M.L.; Moulharat, N.; Guenin, S.P.; Bedut, S.; Nosjean, O.; Ferry, G.; et al. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays. J. Biomol. Screen. 2010, 15, 956–967, doi:10.1177/1087057110375115.
[95]
De Oliveira Dal’Molin, C.G.; Quek, L.E.; Palfreyman, R.W.; Brumbley, S.M.; Nielsen, L.K. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 2010, 152, 579–589, doi:10.1104/pp.109.148817.
[96]
Quek, L.E.; Nielsen, L.K. On the reconstruction of the Mus musculus genome-scale metabolic network model. Genome Inform. 2008, 21, 89–100, doi:10.1142/9781848163324_0008.
[97]
Hammill, L.; Welles, J.; Carson, G.R. The gel microdrop secretion assay: Identification of a low productivity subpopulation arising during the production of human antibody in CHO cells. Cytotechnology 2000, 34, 27–37, doi:10.1023/A:1008186113245.
[98]
Underwood, P.A.; Bean, P.A. Hazards of the limiting-dilution method of cloning hybridomas. J. Immunol. Methods 1988, 107, 119–128, doi:10.1016/0022-1759(88)90017-8.
Meng, Y.G.; Liang, J.; Wong, W.L.; Chisholm, V. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 2000, 242, 201–207, doi:10.1016/S0378-1119(99)00524-7.
[102]
Yoshikawa, T.; Nakanishi, F.; Ogura, Y.; Oi, D.; Omasa, T.; Katakura, Y.; Kishimoto, M.; Suga, K.I. Flow cytometry: An improved method for the selection of highly productive gene-amplified CHO cells using flow cytometry. Biotechnol. Bioeng. 2001, 74, 435–442, doi:10.1002/bit.1134.
[103]
Atochina, O.; Mylvaganam, R.; Akselband, Y.; McGrath, P. Comparison of results using the gel microdrop cytokine secretion assay with ELISPOT and intracellular cytokine staining assay. Cytokine 2004, 27, 120–128, doi:10.1016/j.cyto.2004.04.003.
[104]
Gray, F.; Kenney, J.S.; Dunne, J.F. Secretion capture and report web: Use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J. Immunol. Methods 1995, 182, 155–163, doi:10.1016/0022-1759(94)00319-R.
[105]
Powell, K.T.; Weaver, J.C. Gel microdroplets and flow cytometry: Rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (NY) 1990, 8, 333–337.
[106]
Manz, R.; Assenmacher, M.; Pfluger, E.; Miltenyi, S.; Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 1995, 92, 1921–1925.
[107]
Holmes, P.; Al-Rubeai, M. Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J. Immunol. Methods 1999, 230, 141–147, doi:10.1016/S0022-1759(99)00181-7.
[108]
Brezinsky, S.C.; Chiang, G.G.; Szilvasi, A.; Mohan, S.; Shapiro, R.I.; MacLean, A.; Sisk, W.; Thill, G. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J. Immunol. Methods 2003, 277, 141–155, doi:10.1016/S0022-1759(03)00108-X.
Dharshanan, S.; Chong, H.; Hung, C.S.; Zamrod, Z.; Kamal, N. Rapid automated selection of mammalian cell line secreting high level of humanized monoclonal antibody using Clone Pix FL system and the correlation between exterior median intensity and antibody productivity. Electron. J. Biotechnol. 2011, 14, doi:10.2225/vol14-issue2-fulltext-7.
[111]
Serpieri, F.; Inocencio, A.; de Oliveira, J.M.; Pimenta, A.A., Jr.; Garbuio, A.; Kalil, J.; Brigido, M.M.; Moro, A.M. Comparison of humanized IgG and FvFc anti-CD3 monoclonal antibodies expressed in CHO cells. Mol. Biotechnol. 2010, 45, 218–225, doi:10.1007/s12033-010-9269-2.
[112]
Olejniczak, E.T.; Ruan, Q.; Ziemann, R.N.; Birkenmeyer, L.G.; Saldana, S.C.; Tetin, S.Y. Rapid determination of antigenic epitopes in human NGAL using NMR. Biopolymers 2010, 93, 657–667, doi:10.1002/bip.21417.
[113]
Lobito, A.A.; Ramani, S.R.; Tom, I.; Bazan, J.F.; Luis, E.; Fairbrother, W.J.; Ouyang, W.; Gonzalez, L.C. Murine insulin growth factor-like (IGFL) and human IGFL1 proteins are induced in inflammatory skin conditions and bind to a novel tumor necrosis factor receptor family member, IGFLR1. J. Biol. Chem. 2011, 286, 18969–18981, doi:10.1074/jbc.M111.224626.
[114]
Hanania, E.G.; Fieck, A.; Stevens, J.; Bodzin, L.J.; Palsson, B.O.; Koller, M.R. Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol. Bioeng. 2005, 91, 872–876, doi:10.1002/bit.20559.
[115]
Koller, M.R.; Hanania, E.G.; Stevens, J.; Eisfeld, T.M.; Sasaki, G.C.; Fieck, A.; Palsson, B.O. High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry A 2004, 61, 153–161.
[116]
Richardson, G.; Lin, N.; Lacy, K.; Davis, L.; Gray, M.; Cresswell, J.; Gerber, M.; Caple, M.; Kayser, K. Cell Xpress? Technology Facilitates High-Producing Chinese Hamster Ovary Cell Line Generation Using Glutamine Synthetase Gene Expression System. In Cells and Culture; Noll, T., Ed.; Noll, T.: Berlin, Heidelberg, Germany, 2010; Volume 4, pp. 45–4.
[117]
Yang, W.; Xia, W.; Mao, J.; Xu, D.; Chen, J.; Feng, S.; Wang, J.; Li, H.; Theisen, C.F.; Petersen, J.M.; et al. High level expression, purification and activation of human dipeptidyl peptidase I from mammalian cells. Protein Expr. Purif. 2011, 76, 59–64, doi:10.1016/j.pep.2010.09.001.
[118]
Zhang, Z.; Yang, X.; Yang, H.; Yu, X.; Li, Y.; Xing, J.; Chen, Z. New strategy for large-scale preparation of the extracellular domain of tumor-associated antigen HAb18G/CD147 (HAb18GED). J. Biosci. Bioeng. 2011, 111, 1–6, doi:10.1016/j.jbiosc.2010.08.012.
[119]
Xu, X.; Nagarajan, H.; Lewis, N.E.; Pan, S.; Cai, Z.; Liu, X.; Chen, W.; Xie, M.; Wang, W.; Hammond, S.; et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29, 735–741, doi:10.1038/nbt.1932.
[120]
Melville, M.; Doolan, P.; Mounts, W.; Barron, N.; Hann, L.; Leonard, M.; Clynes, M.; Charlebois, T. Development and characterization of a Chinese hamster ovary cell-specific oligonucleotide microarray. Biotechnol. Lett. 2011, 33, 1773–1779, doi:10.1007/s10529-011-0628-2.
[121]
Wlaschin, K.F.; Nissom, P.M.; Gatti Mde, L.; Ong, P.F.; Arleen, S.; Tan, K.S.; Rink, A.; Cham, B.; Wong, K.; Yap, M.; et al. EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol. Bioeng. 2005, 91, 592–606, doi:10.1002/bit.20511.
[122]
Baik, J.Y.; Lee, M.S.; An, S.R.; Yoon, S.K.; Joo, E.J.; Kim, Y.H.; Park, H.W.; Lee, G.M. Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol. Bioeng. 2006, 93, 361–371.
[123]
De Leon Gatti, M.; Wlaschin, K.F.; Nissom, P.M.; Yap, M.; Hu, W.S. Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J. Biosci. Bioeng. 2007, 103, 82–91, doi:10.1263/jbb.103.82.
[124]
Baycin-Hizal, D.; Tabb, D.L.; Chaerkady, R.; Chen, L.; Lewis, N.E.; Nagarajan, H.; Sarkaria, V.; Kumar, A.; Wolozny, D.; Colao, J.; et al. Proteomic analysis of Chinese hamster ovary cells. J. Proteome Res. 2012, 11, 5265–5276, doi:10.1021/pr300476w.
[125]
Selvarasu, S.; Ho, Y.S.; Chong, W.P.; Wong, N.S.; Yusufi, F.N.; Lee, Y.Y.; Yap, M.G.; Lee, D.Y. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol. Bioeng. 2012, 109, 1415–1429, doi:10.1002/bit.24445.
[126]
Chong, W.P.; Goh, L.T.; Reddy, S.G.; Yusufi, F.N.; Lee, D.Y.; Wong, N.S.; Heng, C.K.; Yap, M.G.; Ho, Y.S. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture. Rapid Commun. Mass Spectrom. 2009, 23, 3763–3771, doi:10.1002/rcm.4328.
[127]
Dietmair, S.; Hodson, M.P.; Quek, L.E.; Timmins, N.E.; Chrysanthopoulos, P.; Jacob, S.S.; Gray, P.; Nielsen, L.K. Metabolite profiling of CHO cells with different growth characteristics. Biotechnol. Bioeng. 2012, 109, 1404–1414, doi:10.1002/bit.24496.
[128]
Hackl, M.; Jadhav, V.; Jakobi, T.; Rupp, O.; Brinkrolf, K.; Goesmann, A.; Puhler, A.; Noll, T.; Borth, N.; Grillari, J. Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines. J. Biotechnol. 2012, 158, 151–155.
[129]
Hammond, S.; Swanberg, J.C.; Polson, S.W.; Lee, K.H. Profiling conserved microRNA expression in recombinant CHO cell lines using Illumina sequencing. Biotechnol. Bioeng. 2012, 109, 1371–1375, doi:10.1002/bit.24415.
[130]
Barron, N.; Kumar, N.; Sanchez, N.; Doolan, P.; Clarke, C.; Meleady, P.; O’Sullivan, F.; Clynes, M. Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. J. Biotechnol. 2011, 151, 204–211.
[131]
Jadhav, V.; Hackl, M.; Bort, J.A.; Wieser, M.; Harreither, E.; Kunert, R.; Borth, N.; Grillari, J. A screening method to assess biological effects of microRNA overexpression in Chinese hamster ovary cells. Biotechnol. Bioeng. 2012, 109, 1376–1385, doi:10.1002/bit.24490.
[132]
Hackl, M.; Jakobi, T.; Blom, J.; Doppmeier, D.; Brinkrolf, K.; Szczepanowski, R.; Bernhart, S.H.; Honer Zu Siederdissen, C.; Bort, J.A.; Wieser, M.; et al. Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering. J. Biotechnol. 2011, 153, 62–75.
[133]
Muller, D.; Katinger, H.; Grillari, J. MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol. 2008, 26, 359–365, doi:10.1016/j.tibtech.2008.03.010.
[134]
Umana, P.; Jean-Mairet, J.; Moudry, R.; Amstutz, H.; Bailey, J.E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 1999, 17, 176–180.
[135]
Baik, J.Y.; Gasimli, L.; Yang, B.; Datta, P.; Zhang, F.; Glass, C.A.; Esko, J.D.; Linhardt, R.J.; Sharfstein, S.T. Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin. Metab. Eng. 2012, 14, 81–90, doi:10.1016/j.ymben.2012.01.008.