全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neurotransmitter CART as a New Therapeutic Candidate for Parkinson’s Disease

DOI: 10.3390/ph6010108

Keywords: cocaine- and amphetamine- regulated transcript, mitochondria, antioxidant, dopamine, oxidative stress, neuroprotection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. To date, there is no effective treatment that halts its progression. Increasing evidence indicates that mitochondria play an important role in the development of PD. Hence mitochondria-targeted approaches or agents may have therapeutic promise for treatment of the disease. Neuropeptide CART (cocaine-amphetamine-regulated transcript), a hypothalamus and midbrain enriched neurotransmitter with an antioxidant property, can be found in mitochondria, which is the main source of reactive oxygen species. Systemic administration of CART has been found to ameliorate dopaminergic neuronal loss and improve motor functions in a mouse model of PD. In this article, we summarize recent progress in studies investigating the relationship between CART, dopamine, and the pathophysiology of PD, with a focus on mitochondria-related topics.

References

[1]  Tanner, C.M.; Goldman, S.M. Epidemiology of Parkinson's Disease. Neurol. Clin. 1996, 14, 317–335, doi:10.1016/S0733-8619(05)70259-0.
[2]  Barzilai, A.; Melamed, E. Molecular Mechanisms of Selective Dopaminergic Neuronal Death in Parkinson's Disease. Trends Mol. Med. 2003, 9, 126–132, doi:10.1016/S1471-4914(03)00020-0.
[3]  Moore, D.J.; West, A.B.; Dawson, V.L.; Dawson, T.M. Molecular Pathophysiology of Parkinson's Disease. Annu. Rev. Neurosci. 2005, 28, 57–87, doi:10.1146/annurev.neuro.28.061604.135718.
[4]  Thomas, B.; Beal, M.F. Parkinson's Disease. Hum. Mol. Genet. 2007, 16 Spec No. 2, R183–R194, doi:10.1093/hmg/ddm159.
[5]  Banerjee, R.; Starkov, A.A.; Beal, M.F.; Thomas, B. Mitochondrial Dysfunction in the Limelight of Parkinson's Disease Pathogenesis. Biochim. Biophys. Acta 2009, 1792, 651–663.
[6]  Schapira, A.H. Targeting Mitochondria for Neuroprotection in Parkinson's Disease. Antioxid. Redox Signal. 2012, 16, 965–973, doi:10.1089/ars.2011.4419.
[7]  Schapira, A.H. Mitochondrial Diseases. Lancet 2012, 379, 1825–1834, doi:10.1016/S0140-6736(11)61305-6.
[8]  Wood-Kaczmar, A.; Gandhi, S.; Wood, N.W. Understanding the Molecular Causes of Parkinson's Disease. Trends Mol. Med. 2006, 12, 521–528, doi:10.1016/j.molmed.2006.09.007.
[9]  Winklhofer, K.F.; Haass, C. Mitochondrial Dysfunction in Parkinson's Disease. Biochim. Biophys. Acta 2010, 1802, 29–44, doi:10.1016/j.bbadis.2009.08.013.
[10]  Mao, P.; Ardeshiri, A.; Jacks, R.; Yang, S.; Hurn, P.D.; Alkayed, N.J. Mitochondrial Mechanism of Neuroprotection by CART. Eur. J. Neurosci. 2007, 26, 624–632, doi:10.1111/j.1460-9568.2007.05691.x.
[11]  Mao, P.; Meshul, C.K.; Thuillier, P.; Goldberg, N.R.; Reddy, P.H. CART Peptide is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria. PLoS One 2012, 7, e29343.
[12]  Warner, T.T.; Schapira, A.H. Genetic and Environmental Factors in the Cause of Parkinson's Disease. Ann. Neurol. 2003, 53 Suppl 3, S16–S23; discussion S23–S25.
[13]  Schapira, A.H. Etiology and Pathogenesis of Parkinson Disease. Neurol. Clin. 2009, 27, 83–603, v, doi:10.1016/j.ncl.2009.04.004.
[14]  Schapira, A.H. Etiology of Parkinson's Disease. Neurology 2006, 66, S10–S23, doi:10.1212/WNL.66.10_suppl_4.S10.
[15]  Lansbury, P.T., Jr; Brice, A. Genetics of Parkinson's Disease and Biochemical Studies of Implicated Gene Products. Curr. Opin. Cell Biol. 2002, 14, 653–660, doi:10.1016/S0955-0674(02)00377-0.
[16]  Dodson, M.W.; Guo, M. Pink1, Parkin, DJ-1 and Mitochondrial Dysfunction in Parkinson's Diseas. Curr. Opin. Neurobiol. 2007, 17, 331–337, doi:10.1016/j.conb.2007.04.010.
[17]  Nuytemans, K.; Theuns, J.; Cruts, M.; Van Broeckhoven, C. Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 Genes: A Mutation Update. Hum. Mutat. 2010, 31, 763–780, doi:10.1002/humu.21277.
[18]  Martin, L.J. Biology of Mitochondria in Neurodegenerative Diseases. Prog. Mol. Biol. Transl. Sci. 2012, 107, 355–415, doi:10.1016/B978-0-12-385883-2.00005-9.
[19]  Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the Alpha-Synuclein Gene Identified in Families with Parkinson's Disease. Science 1997, 276, 2045–2047, doi:10.1126/science.276.5321.2045.
[20]  Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-Synuclein in Lewy Bodies. Nature 1997, 388, 839–840, doi:10.1038/42166.
[21]  Uversky, V.N.; Li, J.; Bower, K.; Fink, A.L. Synergistic Effects of Pesticides and Metals on the Fibrillation of Alpha-Synuclein: Implications for Parkinson's Disease. Neurotoxicology 2002, 23, 527–536, doi:10.1016/S0161-813X(02)00067-0.
[22]  Maraganore, D.M.; de Andrade, M.; Elbaz, A.; Farrer, M.J.; Ioannidis, J.P.; Kruger, R.; Rocca, W.A.; Schneider, N.K.; Lesnick, T.G.; Lincoln, S.J.; et al. Collaborative Analysis of Alpha-Synuclein Gene Promoter Variability and Parkinson Disease. JAMA 2006, 296, 661–670, doi:10.1001/jama.296.6.661.
[23]  Galvin, J.E.; Pollack, J.; Morris, J.C. Clinical Phenotype of Parkinson Disease Dementia. Neurology 2006, 67, 1605–1611, doi:10.1212/01.wnl.0000242630.52203.8f.
[24]  Galvin, J.E. Cognitive Change in Parkinson Disease. Alzheimer Dis. Assoc. Disord. 2006, 20, 302–310, doi:10.1097/01.wad.0000213858.27731.f8.
[25]  Janda, E.; Isidoro, C.; Carresi, C.; Mollace, V. Defective Autophagy in Parkinson's Disease: Role of Oxidative Stress. Mol. Neurobiol. , 2012.
[26]  Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic Systemic Pesticide Exposure Reproduces Features of Parkinson's Disease. Nat. Neurosci. 2000, 3, 1301–1306, doi:10.1038/81834.
[27]  Langston, J.W.; Sastry, S.; Chan, P.; Forno, L.S.; Bolin, L.M.; Di Monte, D.A. Novel Alpha-Synuclein-Immunoreactive Proteins in Brain Samples from the Contursi Kindred, Parkinson's, and Alzheimer's Disease. Exp. Neurol. 1998, 154, 684–690, doi:10.1006/exnr.1998.6975.
[28]  Forno, L.S. Neuropathology of Parkinson's Disease. J. Neuropathol. Exp. Neurol. 1996, 55, 259–272, doi:10.1097/00005072-199603000-00001.
[29]  Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the Parkin Gene Cause Autosomal Recessive Juvenile Parkinsonism. Nature 1998, 392, 605–608, doi:10.1038/33416.
[30]  Giasson, B.I.; Lee, V.M. Are Ubiquitination Pathways Central to Parkinson's Disease? Cell 2003, 114, 1–8, doi:10.1016/S0092-8674(03)00509-9.
[31]  Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; et al. Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1. Science 2004, 304, 1158–1160, doi:10.1126/science.1096284.
[32]  Silvestri, L.; Caputo, V.; Bellacchio, E.; Atorino, L.; Dallapiccola, B.; Valente, E.M.; Casari, G. Mitochondrial Import and Enzymatic Activity of PINK1 Mutants Associated to Recessive Parkinsonism. Hum. Mol. Genet. 2005, 14, 3477–3492, doi:10.1093/hmg/ddi377.
[33]  Bonifati, V.; Rizzu, P.; van Baren, M.J.; Schaap, O.; Breedveld, G.J.; Krieger, E.; Dekker, M.C.; Squitieri, F.; Ibanez, P.; Joosse, M.; et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 2003, 299, 256–259, doi:10.1126/science.1077209.
[34]  Matsuda, N.; Sato, S.; Shiba, K.; Okatsu, K.; Saisho, K.; Gautier, C.A.; Sou, Y.S.; Saiki, S.; Kawajiri, S.; Sato, F.; et al. PINK1 Stabilized by Mitochondrial Depolarization Recruits Parkin to Damaged Mitochondria and Activates Latent Parkin for Mitophagy. J. Cell Biol. 2010, 189, 211–221, doi:10.1083/jcb.200910140.
[35]  Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant Stress Evoked by Pacemaking in Dopaminergic Neurons is Attenuated by DJ-1. Nature 2010, 468, 696–700, doi:10.1038/nature09536.
[36]  Papkovskaia, T.D.; Chau, K.Y.; Inesta-Vaquera, F.; Papkovsky, D.B.; Healy, D.G.; Nishio, K.; Staddon, J.; Duchen, M.R.; Hardy, J.; Schapira, A.H.; et al. G2019S Leucine-Rich Repeat Kinase 2 Causes Uncoupling Protein-Mediated Mitochondrial Depolarization. Hum. Mol. Genet. 2012, 21, 4201–4213, doi:10.1093/hmg/dds244.
[37]  Abeliovich, A. Parkinson's Disease: Mitochondrial Damage Control. Nature 2010, 463, 744–745, doi:10.1038/463744a.
[38]  Schapira, A.H.; Mann, V.M.; Cooper, J.M.; Dexter, D.; Daniel, S.E.; Jenner, P.; Clark, J.B.; Marsden, C.D. Anatomic and Disease Specificity of NADH CoQ1 Reductase (Complex I) Deficiency in Parkinson's Disease. J. Neurochem. 1990, 55, 2142–2145, doi:10.1111/j.1471-4159.1990.tb05809.x.
[39]  Jenner, P. Oxidative Stress in Parkinson's Disease. Ann. Neurol. 2003, S26–S36; discussion S36–S38, doi:10.1002/ana.10483.
[40]  Lin, M.T.; Beal, M.F. Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases. Nature 2006, 443, 787–795, doi:10.1038/nature05292.
[41]  Moran, M.; Moreno-Lastres, D.; Marin-Buera, L.; Arenas, J.; Martin, M.A.; Ugalde, C. Mitochondrial Respiratory Chain Dysfunction: Implications in Neurodegeneration. Free Radic. Biol. Med. 2012, 53, 595–609, doi:10.1016/j.freeradbiomed.2012.05.009.
[42]  Jenner, P. Presymptomatic Detection of Parkinson's Disease. J. Neural Transm. Suppl. 1993, 40, 23–36.
[43]  Zhou, C.; Huang, Y.; Przedborski, S. Oxidative Stress in Parkinson's Disease: A Mechanism of Pathogenic and Therapeutic Significance. Ann. N. Y. Acad. Sci. 2008, 1147, 93–104, doi:10.1196/annals.1427.023.
[44]  Schapira, A.H.; Cooper, J.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial Complex I Deficiency in Parkinson's Disease. J. Neurochem. 1990, 54, 823–827, doi:10.1111/j.1471-4159.1990.tb02325.x.
[45]  Dauer, W.; Przedborski, S. Parkinson's Disease: Mechanisms and Models. Neuron 2003, 39, 889–909, doi:10.1016/S0896-6273(03)00568-3.
[46]  Gunzler, S.A.; Shakil, S.; Carlson, N.E.; Nutt, J.G.; Meshul, C.K. Low Doses of Apomorphine Transiently Reduce Locomotor Activity in MPTP-Treated Mice. Neurosci. Lett. 2007, 428, 64–67, doi:10.1016/j.neulet.2007.09.049.
[47]  Meshul, C.K.; Emre, N.; Nakamura, C.M.; Allen, C.; Donohue, M.K.; Buckman, J.F. Time-Dependent Changes in Striatal Glutamate Synapses Following a 6-Hydroxydopamine Lesion. Neuroscience 1999, 88, 1–16, doi:10.1016/S0306-4522(98)00189-4.
[48]  Robinson, S.; Freeman, P.; Moore, C.; Touchon, J.C.; Krentz, L.; Meshul, C.K. Acute and Subchronic MPTP Administration Differentially Affects Striatal Glutamate Synaptic Function. Exp. Neurol. 2003, 180, 74–87, doi:10.1016/S0014-4886(02)00050-X.
[49]  Fox, S.H.; Brotchie, J.M. The MPTP-Lesioned Non-Human Primate Models of Parkinson's Disease. Past, Present, and Future. Prog. Brain Res. 2010, 184, 133–157, doi:10.1016/S0079-6123(10)84007-5.
[50]  Iderberg, H.; Francardo, V.; Pioli, E.Y. Animal Models of L-DOPA-Induced Dyskinesia: An Update on the Current Options. Neuroscience 2012, 211, 13–27, doi:10.1016/j.neuroscience.2012.03.023.
[51]  Wilhelmus, M.M.; Nijland, P.G.; Drukarch, B.; de Vries, H.E.; van Horssen, J. Involvement and Interplay of Parkin, PINK1, and DJ1 in Neurodegenerative and Neuroinflammatory Disorders. Free Radic. Biol. Med. 2012, 53, 983–992, doi:10.1016/j.freeradbiomed.2012.05.040.
[52]  Manning-Bog, A.B.; McCormack, A.L.; Li, J.; Uversky, V.N.; Fink, A.L.; Di Monte, D.A. The Herbicide Paraquat Causes Up-Regulation and Aggregation of Alpha-Synuclein in Mice: Paraquat and Alpha-Synuclein. J. Biol. Chem. 2002, 277, 1641–1644.
[53]  Dawson, T.M.; Dawson, V.L. Molecular Pathways of Neurodegeneration in Parkinson's Disease. Science 2003, 302, 819–822, doi:10.1126/science.1087753.
[54]  Chan, C.S.; Guzman, J.N.; Ilijic, E.; Mercer, J.N.; Rick, C.; Tkatch, T.; Meredith, G.E.; Surmeier, D.J. Rejuvenation' Protects Neurons in Mouse Models of Parkinson's Disease. Nature 2007, 447, 1081–1086, doi:10.1038/nature05865.
[55]  Chinta, S.J.; Andersen, J.K. Reversible Inhibition of Mitochondrial Complex I Activity Following Chronic Dopaminergic Glutathione Depletion in Vitro: Implications for Parkinson's Disease. Free Radic. Biol. Med. 2006, 41, 1442–1448, doi:10.1016/j.freeradbiomed.2006.08.002.
[56]  Chinta, S.J.; Kumar, M.J.; Hsu, M.; Rajagopalan, S.; Kaur, D.; Rane, A.; Nicholls, D.G.; Choi, J.; Andersen, J.K. Inducible Alterations of Glutathione Levels in Adult Dopaminergic Midbrain Neurons Result in Nigrostriatal Degeneration. J. Neurosci. 2007, 27, 13997–14006, doi:10.1523/JNEUROSCI.3885-07.2007.
[57]  Sarkar, C.; Basu, B.; Chakroborty, D.; Dasgupta, P.S.; Basu, S. The Immunoregulatory Role of Dopamine: An Update. Brain Behav. Immun. 2010, 24, 525–528, doi:10.1016/j.bbi.2009.10.015.
[58]  Rasheed, N.; Alghasham, A. Central Dopaminergic System and its Implications in Stress-Mediated Neurological Disorders and Gastric Ulcers: Short Review. Adv. Pharmacol. Sci. 2012, 2012, 182671.
[59]  Hastings, T.G. The Role of Dopamine Oxidation in Mitochondrial Dysfunction: Implications for Parkinson's Disease. J. Bioenerg. Biomembr. 2009, 41, 469–472, doi:10.1007/s10863-009-9257-z.
[60]  Mao, P.; Reddy, P.H. Aging and Amyloid Beta-Induced Oxidative DNA Damage and Mitochondrial Dysfunction in Alzheimer's Disease: Implications for Early Intervention and Therapeutics. Biochim. Biophys. Acta , 2011.
[61]  Duncan, J.; Johnson, S.; Ou, X.M. Monoamine Oxidases in Major Depressive Disorder and Alcoholism. Drug Discov. Ther. 2012, 6, 112–122.
[62]  Alam, Z.I.; Jenner, A.; Daniel, S.E.; Lees, A.J.; Cairns, N.; Marsden, C.D.; Jenner, P.; Halliwell, B. Oxidative DNA Damage in the Parkinsonian Brain: An Apparent Selective Increase in 8-Hydroxyguanine Levels in Substantia Nigra. J. Neurochem. 1997, 69, 1196–1203.
[63]  Alam, Z.I.; Daniel, S.E.; Lees, A.J.; Marsden, D.C.; Jenner, P.; Halliwell, B. A Generalised Increase in Protein Carbonyls in the Brain in Parkinson's but Not Incidental Lewy Body Disease. J. Neurochem. 1997, 69, 1326–1329.
[64]  Jenner, P. Oxidative Stress and Parkinson's Disease. Handb. Clin. Neurol. 2007, 83, 507–520, doi:10.1016/S0072-9752(07)83024-7.
[65]  Seet, R.C.; Lee, C.Y.; Lim, E.C.; Tan, J.J.; Quek, A.M.; Chong, W.L.; Looi, W.F.; Huang, S.H.; Wang, H.; Chan, Y.H.; et al. Oxidative Damage in Parkinson Disease: Measurement using Accurate Biomarkers. Free Radic. Biol. Med. 2010, 48, 560–566, doi:10.1016/j.freeradbiomed.2009.11.026.
[66]  Douglass, J.; McKinzie, A.A.; Couceyro, P. PCR Differential Display Identifies a Rat Brain mRNA that is Transcriptionally Regulated by Cocaine and Amphetamine. J. Neurosci. 1995, 15, 2471–2481.
[67]  Thim, L.; Kristensen, P.; Nielsen, P.F.; Wulff, B.S.; Clausen, J.T. Tissue-Specific Processing of Cocaine- and Amphetamine-Regulated Transcript Peptides in the Rat. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 2722–2727.
[68]  Larsen, P.J.; Seier, V.; Fink-Jensen, A.; Holst, J.J.; Warberg, J.; Vrang, N. Cocaine- and Amphetamine-Regulated Transcript is Present in Hypothalamic Neuroendocrine Neurones and is Released to the Hypothalamic-Pituitary Portal Circuit. J. Neuroendocrinol. 2003, 15, 219–226, doi:10.1046/j.1365-2826.2003.00960.x.
[69]  Koylu, E.O.; Couceyro, P.R.; Lambert, P.D.; Ling, N.C.; DeSouza, E.B.; Kuhar, M.J. Immunohistochemical Localization of Novel CART Peptides in Rat Hypothalamus, Pituitary and Adrenal Gland. J. Neuroendocrinol. 1997, 9, 823–833.
[70]  Koylu, E.O.; Balkan, B.; Kuhar, M.J.; Pogun, S. Cocaine and Amphetamine Regulated Transcript (CART) and the Stress Response. Peptides 2006, 27, 1956–1969, doi:10.1016/j.peptides.2006.03.032.
[71]  Mao, P. Potential Antidepressant Role of Neurotransmitter CART: Implications for Mental Disorders. Depress Res. Treat. 2011, 2011, 762139.
[72]  Kuhar, M.J.; Adams, S.; Dominguez, G.; Jaworski, J.; Balkan, B. CART Peptides. Neuropeptides 2002, 36, 1–8, doi:10.1054/npep.2002.0887.
[73]  Hunter, R.G.; Kuhar, M.J. CART Peptides as Targets for CNS Drug Development. Curr. Drug Targets CNS Neurol. Disord. 2003, 2, 201–205, doi:10.2174/1568007033482896.
[74]  Rogge, G.; Jones, D.; Hubert, G.W.; Lin, Y.; Kuhar, M.J. CART Peptides: Regulators of Body Weight, Reward and Other Functions. Nat. Rev. Neurosci. 2008, 9, 747–758.
[75]  del Giudice, E.M.; Santoro, N.; Cirillo, G.; D'Urso, L.; Di Toro, R.; Perrone, L. Mutational Screening of the CART Gene in Obese Children: Identifying a Mutation (Leu34Phe) Associated with Reduced Resting Energy Expenditure and Cosegregating with Obesity Phenotype in a Large Family. Diabetes 2001, 50, 2157–2160, doi:10.2337/diabetes.50.9.2157.
[76]  Yanik, T.; Dominguez, G.; Kuhar, M.J.; Del Giudice, E.M.; Loh, Y.P. The Leu34Phe ProCART Mutation Leads to Cocaine- and Amphetamine-Regulated Transcript (CART) Deficiency: A Possible Cause for Obesity in Humans. Endocrinology 2006, 147, 39–43.
[77]  Mao, P.; Jacks, R. Transcriptional Activity by Cocaine-Amphetamine-Regulated Transcript. Mol. Psychiatry 2007, 12, 223–224, doi:10.1038/sj.mp.4001928.
[78]  Wu, B.; Hu, S.; Yang, M.; Pan, H.; Zhu, S. CART Peptide Promotes the Survival of Hippocampal Neurons by Upregulating Brain-Derived Neurotrophic Factor. Biochem. Biophys. Res. Commun. 2006, 347, 656–661, doi:10.1016/j.bbrc.2006.06.117.
[79]  Xu, Y.; Zhang, W.; Klaus, J.; Young, J.; Koerner, I.; Sheldahl, L.C.; Hurn, P.D.; Martinez-Murillo, F.; Alkayed, N.J. Role of Cocaine- and Amphetamine-Regulated Transcript in Estradiol-Mediated Neuroprotection. Proc. Natl. Acad. Sci. USA 2006, 103, 14489–14494.
[80]  Zhang, M.; Han, L.; Xu, Y. Roles of Cocaine- and Amphetamine-Regulated Transcript in the Central Nervous System. Clin. Exp. Pharmacol. Physiol. 2012, 39, 586–592, doi:10.1111/j.1440-1681.2011.05642.x.
[81]  Mao, P. Recent progress and concerns in dementia: distinguishing Alzheimer's disease and dementia with Lewy bodies via biochemical markers in the cerebrospinal fluid. Advances in Biological Chemistry 2012, 2, 176–190, doi:10.4236/abc.2012.22022.
[82]  Swerdlow, R.H.; Newell, K.L. "Untangling" the Relationship between Alzheimer Disease and Dementia with Lewy Bodies. Neurology 2012, 79, 1938–1939, doi:10.1212/WNL.0b013e3182735ecf.
[83]  Cecchini, G. Function and Structure of Complex II of the Respiratory Chain. Annu. Rev. Biochem. 2003, 72, 77–109, doi:10.1146/annurev.biochem.72.121801.161700.
[84]  Rustin, P.; Rotig, A. Inborn Errors of Complex II--Unusual Human Mitochondrial Diseases. Biochim. Biophys. Acta 2002, 1553, 117–122, doi:10.1016/S0005-2728(01)00228-6.
[85]  Bertoni-Freddari, C.; Fattoretti, P.; Paoloni, R.; Caselli, U.; Galeazzi, L.; Meier-Ruge, W. Synaptic Structural Dynamics and Aging. Gerontology 1996, 42, 170–180, doi:10.1159/000213789.
[86]  Gimenez-Roqueplo, A.P.; Favier, J.; Rustin, P.; Rieubland, C.; Kerlan, V.; Plouin, P.F.; Rotig, A.; Jeunemaitre, X. Functional Consequences of a SDHB Gene Mutation in an Apparently Sporadic Pheochromocytoma. J. Clin. Endocrinol. Metab. 2002, 87, 4771–4774, doi:10.1210/jc.2002-020525.
[87]  Maier-Woelfle, M.; Brandle, M.; Komminoth, P.; Saremaslani, P.; Schmid, S.; Locher, T.; Heitz, P.U.; Krull, I.; Galeazzi, R.L.; Schmid, C.; et al. A Novel Succinate Dehydrogenase Subunit B Gene Mutation, H132P, Causes Familial Malignant Sympathetic Extraadrenal Paragangliomas. J. Clin. Endocrinol. Metab. 2004, 89, 362–367, doi:10.1210/jc.2003-031236.
[88]  Chinta, S.J.; Andersen, J.K. Dopaminergic Neurons. Int. J. Biochem. Cell Biol. 2005, 37, 942–946, doi:10.1016/j.biocel.2004.09.009.
[89]  Fagergren, P.; Hurd, Y. CART mRNA Expression in Rat Monkey and Human Brain: Relevance to Cocaine Abuse. Physiol. Behav. 2007, 92, 218–225, doi:10.1016/j.physbeh.2007.05.027.
[90]  Dallvechia-Adams, S.; Smith, Y.; Kuhar, M.J. CART Peptide-Immunoreactive Projection from the Nucleus Accumbens Targets Substantia Nigra Pars Reticulata Neurons in the Rat. J. Comp. Neurol. 2001, 434, 29–39, doi:10.1002/cne.1162.
[91]  Dallvechia-Adams, S.; Kuhar, M.J.; Smith, Y. Cocaine- and Amphetamine-Regulated Transcript Peptide Projections in the Ventral Midbrain: Colocalization with Gamma-Aminobutyric Acid, Melanin-Concentrating Hormone, Dynorphin, and Synaptic Interactions with Dopamine Neurons. J. Comp. Neurol. 2002, 448, 360–372, doi:10.1002/cne.10268.
[92]  Upadhya, M.A.; Nakhate, K.T.; Kokare, D.M.; Singh, U.; Singru, P.S.; Subhedar, N.K. CART Peptide in the Nucleus Accumbens Shell Acts Downstream to Dopamine and Mediates the Reward and Reinforcement Actions of Morphine. Neuropharmacology 2012, 62, 1823–1833, doi:10.1016/j.neuropharm.2011.12.004.
[93]  Moffett, M.C.; Song, J.; Kuhar, M.J. CART Peptide Inhibits Locomotor Activity Induced by Simultaneous Stimulation of D1 and D2 Receptors, but Not by Stimulation of Individual Dopamine Receptors. Synapse 2011, 65, 1–7, doi:10.1002/syn.20815.
[94]  Hostetler, C.M.; Kowalczyk, A.S.; Griffin, L.L.; Bales, K.L. CART Peptide Following Social Novelty in the Prairie Vole (Microtus Ochrogaster). Brain Res. 2011, 1414, 32–40, doi:10.1016/j.brainres.2011.07.040.
[95]  Brischoux, F.; Griffond, B.; Fellmann, D.; Risold, P.Y. Early and Transient Ontogenetic Expression of the Cocaine- and Amphetamine-Regulated Transcript Peptide in the Rat Mesencephalon: Correlation with Tyrosine Hydroxylase Expression. J. Neurobiol. 2002, 52, 221–229, doi:10.1002/neu.10077.
[96]  Goldberg, N.R.; Haack, A.K.; Lim, N.S.; Janson, O.K.; Meshul, C.K. Dopaminergic and Behavioral Correlates of Progressive Lesioning of the Nigrostriatal Pathway with 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine. Neuroscience 2011, 180, 256–271, doi:10.1016/j.neuroscience.2011.02.027.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133