Nearly 1% of all clinically used drugs are catecholics, a family of catechol-containing compounds. Using label-free dynamic mass redistribution and Tango β-arrestin translocation assays, we show that several catecholics, including benserazide, catechol, 3-methoxycatechol, pyrogallol, (+)-taxifolin and fenoldopam, display agonistic activity against GPR35.
References
[1]
Yang, D.P.; Ji, H.F.; Tang, G.Y.; Ren, W.; Zhang, H.Y. How many drugs are catecholics. Molecules 2007, 12, 878–884.
[2]
Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006, 281, 22021–22028.
[3]
Oka, S.; Ota, R.; Shima, M.; Yamashita, A.; Sugiura, T. GPR35 is a novel lysophosphatidic acid receptor. Biochem. Biophys. Res. Comm. 2010, 395, 232–237, doi:10.1016/j.bbrc.2010.03.169.
[4]
Deng, H.; Hu, H.; Fang, Y. Multiple tyrosine metabolites are GPR35 agonists. Sci. Rep. 2012, 2, 373.
[5]
Southern, C.; Cook, J.M.; Neetoo-Isseljee, Z.; Taylor, D.L.; Kettleborough, C.A.; Merritt, A.; Bassoni, D.L.; Raab, W.J.; Quinn, E.; Wehrman, T.S.; et al. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J. Biomol. Screen. 2013, doi:10.1177/1087057113475480.
[6]
Taniguchia, Y.; Tonai-Kachia, H.; Shinjo, K. Zaprinast, A well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, Is an agonist for GPR35. FEBS Lett. 2006, 580, 5003–5008, doi:10.1016/j.febslet.2006.08.015.
[7]
Yang, Y.; Lu, J. Y. L.; Wu, X.; Summer, S.; Whoriskey, J.; Saris, C.; Reagan, J.D. G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 2010, 86, 1–5, doi:10.1159/000314164.
[8]
Jenkins, L.; Brea, J.; Smith, N.J.; Hudson, B.D.; Reilly, G.; Bryant, N.J.; Castro, M.; Loza, M.I.; Milligan, G. Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem. J. 2010, 432, 451–459.
[9]
Deng, H.; Hu, H.; Fang, Y. Tyrphostin analogs are GPR35 agonists. FEBS Lett. 2011, 585, 1957–1962.
[10]
Deng, H.; Hu, H.; He, M.; Hu, J.; Niu, W.; Ferrie, A.M.; Fang, Y. Discovery of 2-(4-methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as G protein-coupled receptor-35 (GPR35) agonists. J. Med. Chem. 2011, 54, 7385–7396, doi:10.1021/jm200999f.
[11]
Deng, H.; Hu, H.; Ling, S.; Ferrie, A.M.; Fang, Y. Discovery of natural phenols as G protein-coupled receptor-35 (GPR35) agonists. ACS Med. Chem. Lett. 2012, 3, 165–169, doi:10.1021/ml2003058.
[12]
Yang, Y.; Fu, A.; Wu, X.; Reagan, J.D. GPR35 is a target of the loop diuretic drugs bumetanide and furosemide. Pharmacology 2012, 89, 13–17, doi:10.1159/000335127.
[13]
Deng, H.; Fang, Y. Anti-inflammatory gallic acid and wedelolactone are G protein-coupled receptor-35 agonists. Pharmacology 2012, 89, 211–219.
[14]
Deng, H.; Fang, Y. Synthesis and agonistic activity at the GPR35 of 5,6-dihydroxyindole-2-carboxylic acid analogs. ACS Med. Chem. Lett. 2012, 3, 550–554, doi:10.1021/ml300076u.
[15]
Deng, H.; Fang, Y. Discovery of nitrophenols as GPR35 agonists. Med. Chem. Comm. 2012, 3, 1270–1274, doi:10.1039/c2md20210g.
[16]
Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Mauro, J.; Balakrishnan, J. Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 2006, 91, 1925–1940, doi:10.1529/biophysj.105.077818.
[17]
Fang, Y. The development of label-free cellular assays for drug discovery. Exp. Opin. Drug Discov. 2011, 6, 1285–1298, doi:10.1517/17460441.2012.642360.
[18]
Fang, Y. Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J. Pharmacol. Tox. Methods 2013, 67, 69–81, doi:10.1016/j.vascn.2013.01.004.
[19]
Heynen-Genel, S.; Dahl, R.; Shi, S.; Sauer, M.; Hariharan, S.; Sergienko, E.; Dad, S.; Chung, T.D.Y.; Stonich, D.; Su, Y.; Caron, M.; et al. Antagonists for the orphan receptor GPR35. Probe Reports from the Molecular Libraries Program 2010, BK5070.
[20]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A comprehensive resource for “omics” research on drugs. Nucleic Acids Res. 2011, 39, D1035–D1041.
[21]
Greenacre, J.K.; Coxon, A.; Petrie, A.; Reid, J.L. Comparison of levodopa with carbidopa or benserazide in parkinsonism. Lancet 1976, 2, 381–384.
[22]
Grenader, A.; Healy, D.P. Fenoldopam is a partial agonist at dopamine-1 (DA1) receptors in LLC-PK1 cells. J. Pharmacol. Exp. Ther. 1991, 258, 193–198.
[23]
Amadasi, A.; Mozzarelli, A.; Meda, C.; Maggi, A.; Cozzini, P. Identification of xenoestrogens in food additives by an integrated in silico and in vitro approach. Chem. Res. Toxicol. 2009, 22, 52–63.
[24]
Heck, D.A.; Bylund, D.B. Mechanism of down-regulation of α2-adrenergic receptor subtypes. J. Pharmacol. Exp. Ther. 1997, 282, 1219–1227.
[25]
Abel, P.W.; Zeng, W.; Wildrick, D.M.; Makoid, M.C.; Boman, B.M. Characterization of β-adrenergic receptors in DiFi and HT-29 cells. Anticancer Res. 1992, 12, 1655–1658.
[26]
Fang, Y.; Ferrie, A.M. Label-free optical biosensor for ligand-directed functional selectivity acting on β2-adrenoceptor in living cells. FEBS Lett. 2008, 582, 558–564, doi:10.1016/j.febslet.2008.01.021.
[27]
Jenkins, L.; Harries, N.; Lappin, J.E.; MacKenzie, A.E.; Neetoo-Isseljee, Z.; Southern, C.; McIver, E.G.; Nicklin, S.A.; Taylor, D.L.; Milligan, G. Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J. Pharmacol. Exp. Ther. 2012, 343, 683–695.
[28]
Giovanni, S.D.; Eleuteri, S.; Paleologou, K.E.; Yin, G.; Zweckstetter, M.; Carrupt, P.-A.; Lashuel, H.A. Entacapone and tolcapone, two catechol O-methyltransferase inhibitors, block fibril formation of α-synuclein and β-amyloid and protect against amyloid-induced toxicity. J. Biol. Chem. 2010, 285, 14941–14954, doi:10.1074/jbc.M109.080390.