全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

DOI: 10.3390/ph6020184

Keywords: cell penetrating peptides, CPPs, formation of non-covalent complexes, MPG peptides, internalized amount of cargoes, relationships between CPP, cargo and cell type?

Full-Text   Cite this paper   Add to My Lib

Abstract:

Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

References

[1]  Heitz, F.; Morris, M.C.; Divita, G. Twenty years of cell-penetrating peptides: from molecular mechanism to therapeutics. Br. J. Pharmacol. 2009, 157, 195–206.
[2]  Deshayes, S.; Morris, M.; Heitz, F.; Divita, G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Del. Reviews 2008, 60, 537–547.
[3]  Lindgren, M.; Langel, U. Classes and prediction of cell-penetrating peptides. In Cell penetrating peptides Methods and Protocols. Methods in Molecular Biology; Langel, U., Ed.; Springer: Amsterdam, The Netherlands, 2011; Volume 683, pp. 3–19.
[4]  Dupont, E.; Prochiantz, A.; Joliot, A. Penetratin story: An overview. Cell penetrating peptides. In Cell penetrating peptides Methods and Protocols. Methods in Molecular Biology; Langel, U., Ed.; Springer: Amsterdam, The Netherlands, 2011; Volume 683, pp. 21–29.
[5]  Deshayes, S.; Plenat, Th.; Aldrian-Herrada, G.; Divita, G.; Le Grimellec, Ch.; Heitz, F. Primary amphipathic cell penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry 2004, 43, 7698–7706.
[6]  Kurzawa, L.; Pellerano, M.; Morris, M.C. PEP and CADY-mediated delivery of fluorescent peptides and proteins into living cells. Biochim. Biophys. Acta 2010, 1798, 2274–2285.
[7]  Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Qu.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Therapy 2009, 17, 95–103.
[8]  Gomez, J.A.; Gama, V.; Yoshida, T.; Sun, W.; Hayes, P.; Leskov, K.; Boothman, D.; Matsuyama, S. Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem. Soc. Trans. 2007, 35, 797–801.
[9]  Gomez, J.; Matsuyama, S. Cell-penetrating penta-peptides and BAX-inhibiting peptides: Protocol for their application. In Cell penetrating peptides Methods and Protocols. Methods in Molecular Biology; Langel, U., Ed.; Springer: Amsterdam, The Netherland, 2011; Volume 683, pp. 465–471.
[10]  Breitling, R.; Klingner, S.; Callewaert, N.; Pietrucha, R.; Geyer, A.; Ehrlich, G.; Hartung, R.; Mueller, A.; Contreras, R.; Beverley, St.M.; Alexandrov, K. Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr. Purific. 2002, 25, 209–218.
[11]  Aamand, H.L.; Norden, B.; Fant, K. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem. Biophys. Res. Comm. 2012, 418, 469–474.
[12]  Richard, J.P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L.V. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 2005, 280, 15300–15306.
[13]  Ignatovich, I.A.; Dishe, E.B.; Pavlotskaya, A.V.; Akifiev, B.N.; Burov, S.V.; Orlov, S.V.; Perevozchikov, A.P. Complexes of plasmid DNA with basic domain 47–57 of HIV-1 TAT protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 2003, 43, 42625–42636.
[14]  Jeang, K.T.; Xiao, H.; Rich, E.A. Multifaced activities of the HIV-1 transactivator of transcription, TAT. J. Biol. Chem. 1999, 274, 28837–28840.
[15]  Gros, E.; Deshayes, S.; Morris, M.C.; Aldrian-Herrada, G.; Depollier, J.; Heitz, F.; Divita, G. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim. Biophys. Acta 2006, 1758, 384–393.
[16]  Chaloin, L.; Vidal, P.; Heitz, A.; Van Mau, N.; Mery, J.; Divita, G.; Heitz, F. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry 1997, 36, 11179–11187, doi:10.1021/bi9708491.
[17]  Deshayes, S.; Heitz, A.; Morris, M.C.; Charnet, P.; Divita, G.; Heitz, F. Insight into mechanism of internalization of cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry 2004, 43, 1449–1457.
[18]  Morris, M.C.; Gros, E.; Aldrian-Herrada, G.; Choob, M.; Archdeacon, J.; Heitz, F.; Divita, G. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acid Res. 2007, 35 No7, e49.
[19]  M?e, M.; EL Andaloussi, S.; Lundin, P.; Oskolkov, N.; Johansson, H.J.; Guterstam, P.; Langel, U. A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J. Controlled Rel. 2009, 134, 221–227.
[20]  Oskolkov, N.; Arukuusk, P.; Copolovici, D.-M.; Lindberg, St.; Margus, H.; Padar, K.; Pooga, M.; Langel, U. NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int. J. Pept. Res. Therapeutics 2011, 17, 147–157, doi:10.1007/s10989-011-9252-1.
[21]  Ezzat, K.; EL Andaloussi, S.; Zaghloul, E.M.; Lehto, T.; Lindberg, St.; Moreno, P.M.D.; Viola, J.R.; Magdy, T.; Abdo, R.; Guterstam, P.; Sillard, R.; Hammond, S.M.; Wood, M.J.A.; Arzumanov, A.A.; Gait, M.J.; Smith, C.I.E.; H?llbrink, M.; Langel, U. PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acid Res. 2011, 39, 5284–5298.
[22]  Hariton-Gazal, E.; Rosenbluh, J.; Graessmann, A.; Gilon, C.; Loyter, A. Direct translocation of histone molecules across cell membranes. J. Cell Sci. 2003, 116, 4577–4586, doi:10.1242/jcs.00757.
[23]  Singh, R.K.; Liang, D.; Gajjalaiavari, U.R.; Kabaj, M.-H.M.; Paik, J.; Gunjan, A. Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle 2010, 9, 4236–4244, doi:10.4161/cc.9.20.13636.
[24]  Mussbach, F.; Franke, M.; Zoch, A.; Schaefer, B.; Reissmann, S. Transduction of peptides and proteins into live cells by cell penetrating peptides. J. Cell. Biochem. 2011, 112, 3824–3833, doi:10.1002/jcb.23313.
[25]  Zoda, M.S.; Zacharias, M.; Mussbach, F.; Schaefer, B.; Reissmann, S. Assembly and stimulatory activity of backbone to side chain cyclic octapeptide-ligands for the N-terminal SH2-domain of the protein-tyrosine phosphatase SHP-1. Copenhagen, Denmark; pp. 210–211.
[26]  Mussbach, F.; Pietrucha, R.; Schaefer, B.; Reissmann, S. Internalization of nucleoside phosphates into live cells by complex formation with different cell penetrating peptides and JBS-Nucleoducin. In Cell penetrating peptides Methods and Protocols. Methods in Molecular Biology; Langel, U., Ed.; Springer: Amsterdam, The Netherland, 2011; Volume 683, pp. 33–40.
[27]  LEXSY-Eukaryotic protein expression in Leishmania tarentolae. Available online: http://www.jenabioscience.com/cms/en/1/browse/1838, , accessed on 4 February 2013.
[28]  Keller, A.-A.; Breitling, R.; Hemmerich, P.; Braun, M.; Schaefer, B.; Lorkowski, S.; Reissmann, S. Transduction of proteins into Leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptidesIn preparation. .
[29]  Wu, R.P.; Youngblood, D.S.; Hassinger, J.N.; Lovejoy, C.E.; Nelson, M.H.; Iversen, P.L.; Moulton, H.M. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res. 2007, 35, 5182–5191, doi:10.1093/nar/gkm478.
[30]  Niles, A.L.; Moravec, R.A.; Hesselberth, P.E.; Scurria, M.A.; Daily, W.J.; Riss, T.L. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal. Biochem. 2007, 366, 197–206, doi:10.1016/j.ab.2007.04.007.
[31]  Brand, P.; Lenser, T.; Hemmerich, P. Assembly dynamics of PML nuclear bodies in living cells. PMC Biophysics 2010, 3, doi:10.1186/1757-5036-3-3.
[32]  Deshayes, S.; Konate, K.; Aldrian, G.; Crombez, L.; Heitz, F.; Divita, G. Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochim. Biophys. Acta 2010, 1798, 2304–2314, doi:10.1016/j.bbamem.2010.06.005.
[33]  Nakase, I.; Tadokoro, A.; Kawabata, N.; Takeuchi, T.; Katoh, H.; Hiramoto, K.; Negishi, M.; Nomizu, M.; Sugiura, Y.; Futaki, S. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 2007, 46, 492–501.
[34]  Foerg, C.; Ziegler, U.; Fernandez-Carneado, J.; Giralt, E.; Renner, R.; Beck-Sickinger, A.; Merkle, H.P. Decoding the entry of two novel cell-penetrating peptides in HeLa-cells: Lipid raft-mediated endocytosis and endosomal escape. Biochemistry 2005, 44, 72–81.
[35]  Madani, F.; Lindberg, S.; Langel, U.; Futaki, S.; Graeslund, A. Mechanism of cellular uptake of cell-penetrating peptides. J. Biophysics 2011, 1–10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133