|
Fructose-1, 6-diphosphate (FDP) as a novel antidote for yellow oleander-induced cardiac toxicity: A randomized controlled double blind studyAbstract: We set up a randomised double blind clinical trial to assess the effectiveness of Fructose 1, 6 diphosphate (FDP) in acute yellow oleander poisoning patients admitted to the adult medical wards of a tertiary hospital in Sri Lanka. Patients will be initially resuscitated following the national guidelines and eligible patients will be randomised to receive either FDP or an equal amount of normal saline. The primary outcome measure for this study is the sustained reversion to sinus rhythm with a heart rate greater than 50/min within 2 hours of completion of FDP/placebo bolus. Secondary outcomes include death, reversal of hyperkalaemia on the 6, 12, 18 and 24 hour samples and maintenance of sinus rhythm on the holter monitor. Analysis will be on intention-to-treat.This trial will provide information on the effectiveness of FDP in yellow oleander poisoning. If FDP is effective in cardiac glycoside toxicity, it would provide substantial benefit to the patients in rural Asia. The drug is inexpensive and thus could be made available at primary care hospitals if proven to be effective.Current Controlled trial ISRCTN71018309Cardiac glycoside toxicity is the most common type of plant poisoning in Sri Lanka and some other South Asian countries [1-3]. At present, symptomatic cardiac glycoside poisoning carries a mortality rate of 10% in Sri Lanka [1]. Cardiac glycosides inhibit the enzyme Na-K-ATPase of the cardiac myocyte and the conducting system and increase intracellular calcium concentrations. This rise in intracellular calcium may be a mechanism for ventricular arrhythmias [4]. These effects lead to increased automaticity and excitability both during early and late depolarization of the cardiac cell. Patients also develop very high serum potassium concentrations as a result of inhibition of Na-K-ATPase. Patients may develop arrhythmias and become hypotensive. Hypotension interferes with intracellular production of ATP through glycolysis, as lactate (produced due to anaerob
|