While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.
References
[1]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Globocan 2008 v2.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 10. Available online: http://globocan.iarc.fr/ (accessed on 26 November 2012).
[2]
American cancer society. Cancer facts & figures 2012. Available online: http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2012/ (accessd on 26 November 2012).
[3]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390, doi:10.1056/NEJMoa0708857.
[4]
Zhu, A.X.; Duda, D.G.; Sahani, D.V.; Jain, R.K. Hcc and angiogenesis: Possible targets and future directions. Nat. Rev. Clin. Oncol. 2011, 8, 292–301, doi:10.1038/nrclinonc.2011.30.
Burnett, J.C.; Rossi, J.J.; Tiemann, K. Current progress of sirna/shrna therapeutics in clinical trials. Biotechnol. J. 2011, 6, 1130–1146, doi:10.1002/biot.201100054.
[7]
Haussecker, D. The business of rnai therapeutics in 2012. Mol. Ther. Nucleic Acids 2012, 1, e8, doi:10.1038/mtna.2011.9.
[8]
Wei, J.; Jones, J.; Kang, J.; Card, A.; Krimm, M.; Hancock, P.; Pei, Y.; Ason, B.; Payson, E.; Dubinina, N.; et al. Rna-induced silencing complex-bound small interfering rna is a determinant of rna interference-mediated gene silencing in mice. Mol. Pharmacol. 2011, 79, 953–963, doi:10.1124/mol.110.070409.
[9]
Bartlett, D.W. Insights into the kinetics of sirna-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006, 34, 322–333, doi:10.1093/nar/gkj439.
[10]
Spiller, D.G.; Giles, R.V.; Broughton, C.M.; Grzybowski, J.; Ruddell, C.J.; Tidd, D.M.; Clark, R.E. The influence of target protein half-life on the effectiveness of antisense oligonucleotide analog-mediated biologic responses. Antisense Nucleic Acid Drug Dev. 1998, 8, 281–293, doi:10.1089/oli.1.1998.8.281.
[11]
Larsson, E.; Sander, C.; Marks, D. Mrna turnover rate limits sirna and microrna efficacy. Mol. Syst. Biol. 2010, 6, 1–9.
[12]
Kennedy, S.; Wang, D.; Ruvkun, G. A conserved sirna-degrading rnase negatively regulates rna interference in c. Elegans. Nature 2004, 427, 645–649, doi:10.1038/nature02302.
[13]
Bian, Y.; Zhou, W.; Zhao, Y.; Li, X.; Geng, W.; Hao, R.; Yang, Q.; Huang, W. High-dose sirnas upregulate mouse eri-1 at both transcription and posttranscription levels. PLoS ONE 2011, 6, e26466.
[14]
Caffrey, D.R.; Zhao, J.; Song, Z.; Schaffer, M.E.; Haney, S.A.; Subramanian, R.R.; Seymour, A.B.; Hughes, J.D. Sirna off-target effects can be reduced at concentrations that match their individual potency. PLoS ONE 2011, 6, e21503, doi:10.1371/journal.pone.0021503.
[15]
Calera, M.R.; Venkatakrishnan, A.; Kazlauskas, A. Ve-cadherin increases the half-life of vegf receptor 2. Exp. Cell Res. 2004, 300, 248–256, doi:10.1016/j.yexcr.2004.07.007.
[16]
Schlessinger, J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry 1988, 27, 3119–3123.
[17]
Dhut, S.; Chaplin, T.; Young, B.D. Bcr-abl and bcr proteins: Biochemical characterization and localization. Leukemia 1990, 4, 745–750.
[18]
Wang, P.Y.; Rao, J.N.; Zou, T.; Liu, L.; Xiao, L.; Yu, T.X.; Turner, D.J.; Gorospe, M.; Wang, J.Y. Post-transcriptional regulation of mek-1 by polyamines through the rna-binding protein hur modulating intestinal epithelial apoptosis. Biochem. J. 2010, 426, 293–306, doi:10.1042/BJ20091459.
[19]
Keating, M.T.; Williams, L.T. Processing of the platelet-derived growth factor receptor. Biosynthetic and degradation studies using anti-receptor antibodies. J. Biol. Chem. 1987, 262, 7932–7937.
[20]
Yang, E.; van Nimwegen, E.; Zavolan, M.; Rajewsky, N.; Schroeder, M.; Magnasco, M.; Darnell, J.E. Decay rates of human mrnas: Correlation with functional characteristics and sequence attributes. Genome Res. 2003, 13, 1863–1872.
[21]
Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008, 48, 1312–1327, doi:10.1002/hep.22506.
Naito, Y.; Ui-Tei, K. Sirna design software for a target gene-specific rna interference. Front. Genet. 2012, 3, 102.
[25]
Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of rna interference. Nature 2001, 409, 363–366.
[26]
Zamore, P.D.; Tuschl, T.; Sharp, P.A.; Bartel, D.P. Rnai: Double-stranded rna directs the atp-dependent cleavage of mrna at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33, doi:10.1016/S0092-8674(00)80620-0.
[27]
Nyk?nen, A.; Haley, B.; Zamore, P.D. Atp requirements and small interfering rna structure in the rna interference pathway. Cell 2001, 107, 309–321, doi:10.1016/S0092-8674(01)00547-5.
[28]
Elbashir, S.M.; Martinez, J.; Patkaniowska, A.; Lendeckel, W.; Tuschl, T. Functional anatomy of sirnas for mediating efficient rnai in drosophila melanogaster embryo lysate. EMBO J. 2001, 20, 6877–6888, doi:10.1093/emboj/20.23.6877.
[29]
Lima, W.F.; Murray, H.; Nichols, J.G.; Wu, H.; Sun, H.; Prakash, T.P.; Berdeja, A.R.; Gaus, H.J.; Crooke, S.T. Human dicer binds short single-strand and double-strand rna with high affinity and interacts with different regions of the nucleic acids. J. Biol. Chem. 2009, 284, 2535–2548.
[30]
Sakurai, K.; Amarzguioui, M.; Kim, D.; Alluin, J.; Heale, B.; Song, M.; Gatignol, A.; Behlke, M.A.; Rossi, J.J. A role for human dicer in pre-risc loading of sirnas. Nucleic Acids Res. 2011, 39, 1510–1525, doi:10.1093/nar/gkq846.
[31]
Liu, Q.H.; Rand, T.A.; Kalidas, S.; Du, F.H.; Kim, H.E.; Smith, D.P.; Wang, X.D. R2d2, a bridge between the initiation and effector steps of the drosophila rnai pathway. Science 2003, 301, 1921–1925, doi:10.1126/science.1088710.
[32]
Tomari, Y.; Du, T.; Haley, B.; Schwarz, D.; Bennett, R.; Cook, H.; Koppetsch, B.; Theurkauf, W.; Zamore, P. Risc assembly defects in the drosophila rnai mutant armitage. Cell 2004, 116, 831–841, doi:10.1016/S0092-8674(04)00218-1.
[33]
Tomari, Y.; Matranga, C.; Haley, B.; Martinez, N.; Zamore, P.D. A protein sensor for sirna asymmetry. Science 2004, 306, 1377–1380, doi:10.1126/science.1102755.
[34]
Chendrimada, T.; Gregory, R.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. Trbp recruits the dicer complex to ago2 for microrna processing and gene silencing. Nature 2005, 436, 740–744, doi:10.1038/nature03868.
[35]
Hammond, S.M.; Bernstein, E.; Beach, D.; Hannon, G.J. An rna-directed nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature 2000, 404, 293–296.
[36]
MacRae, I.J.; Ma, E.; Zhou, M.; Robinson, C.V.; Doudna, J.A. In vitro reconstitution of the human risc-loading complex. Proc. Natl. Acad. Sci. USA 2008, 105, 512–517.
[37]
Gredell, J.A.; Dittmer, M.J.; Wu, M.; Chan, C.; Walton, S.P. Recognition of sirna asymmetry by tar rna binding protein. Biochemistry 2010, 49, 3148–3155, doi:10.1021/bi902189s.
[38]
Noland, C.L.; Ma, E.; Doudna, J.A. Sirna repositioning for guide strand selection by human dicer complexes. Mol. Cell 2011, 43, 110–121, doi:10.1016/j.molcel.2011.05.028.
Schwarz, D.; Hutvagner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P. Asymmetry in the assembly of the rnai enzyme complex. Cell 2003, 115, 199–208, doi:10.1016/S0092-8674(03)00759-1.
[41]
Hamilton, A.; Baulcombe, D. A species of small antisense rna in posttranscriptional gene silencing in plants. Science 1999, 286, 950–952, doi:10.1126/science.286.5441.950.
[42]
Elbashir, S.M.; Lendeckel, W.; Tuschl, T. Rna interference is mediated by 21-and 22-nucleotide rnas. Genes Dev. 2001, 15, 188–200, doi:10.1101/gad.862301.
[43]
Rand, T.A.; Petersen, S.; Du, F.; Wang, X. Argonaute2 cleaves the anti-guide strand of sirna during risc activation. Cell 2005, 123, 621–629, doi:10.1016/j.cell.2005.10.020.
[44]
Leuschner, P.J.F.; Ameres, S.L.; Kueng, S.; Martinez, J. Cleavage of the sirna passenger strand during risc assembly in human cells. EMBO Rep. 2006, 7, 314–320, doi:10.1038/sj.embor.7400637.
[45]
Matranga, C.; Tomari, Y.; Shin, C.; Bartel, D.; Zamore, P. Passenger-strand cleavage facilitates assembly of sirna into ago2-containing rnai enzyme complexes. Cell 2005, 123, 607–620, doi:10.1016/j.cell.2005.08.044.
[46]
Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q.; Tomari, Y. Atp-dependent human risc assembly pathways. Nat. Struct. Mol. Biol. 2010, 17, 17–23, doi:10.1038/nsmb.1733.
[47]
Rivas, F.V.; Tolia, N.H.; Song, J.J.; Aragon, J.P.; Liu, J.D.; Hannon, G.J.; Joshua-Tor, L. Purified argonaute2 and an sirna form recombinant human risc. Nat. Struct. Mol. Biol. 2005, 12, 340–349, doi:10.1038/nsmb918.
[48]
Haley, B.; Zamore, P.D. Kinetic analysis of the rnai enzyme complex. Nat. Struct. Mol. Biol. 2004, 11, 599–606, doi:10.1038/nsmb780.
Snead, N.M.; Rossi, J.J. Biogenesis and function of endogenous and exogenous sirnas. Wiley Interdiscip. Rev. RNA 2010, 1, 117–131.
[51]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of mirnas and sirnas. Cell 2009, 136, 642–655, doi:10.1016/j.cell.2009.01.035.
[52]
Grimm, D.; Streetz, K.L.; Jopling, C.L.; Storm, T.A.; Pandey, K.; Davis, C.R.; Marion, P.; Salazar, F.; Kay, M.A. Fatality in mice due to oversaturation of cellular microrna/short hairpin rna pathways. Nature 2006, 441, 537–541, doi:10.1038/nature04791.
[53]
Frank, F.; Sonenberg, N.; Nagar, B. Structural basis for 5'-nucleotide base-specific recognition of guide rna by human ago2. Nature 2010, 465, 818–822, doi:10.1038/nature09039.
[54]
Walton, S.P.; Wu, M.; Gredell, J.A.; Chan, C. Designing highly active sirnas for therapeutic applications. FEBS J. 2010, 277, 4806–4813, doi:10.1111/j.1742-4658.2010.07903.x.
[55]
Betancur, J.G.; Tomari, Y. Dicer is dispensable for asymmetric risc loading in mammals. RNA 2012, 18, 24–30, doi:10.1261/rna.029785.111.
[56]
Hutvagner, G. Small rna asymmetry in rnai: Function in risc assembly and gene regulation. FEBS Lett. 2005, 579, 5850–5857, doi:10.1016/j.febslet.2005.08.071.
Huesken, D.; Lange, J.; Mickanin, C.; Weiler, J.; Asselbergs, F.; Warner, J.; Meloon, B.; Engel, S.; Rosenberg, A.; Cohen, D.; et al. Design of a genome-wide sirna library using an artificial neural network. Nat. Biotechnol. 2005, 23, 995–1001, doi:10.1038/nbt1118.
[61]
Ladunga, I. More complete gene silencing by fewer sirnas: Transparent optimized design and biophysical signature. Nucleic Acids Res. 2006, 35, 433–440, doi:10.1093/nar/gkl1065.
[62]
Shabalina, S.A.; Spiridonov, A.N.; Ogurtsov, A.Y. Computational models with thermodynamic and composition features improve sirna design. BMC Bioinformatics 2006, 7.
[63]
Amarzguioui, M.; Prydz, H. An algorithm for selection of functional sirna sequences. Biochem. Biophys. Res. Commun. 2004, 316, 1050–1058, doi:10.1016/j.bbrc.2004.02.157.
[64]
Gong, W.; Ren, Y.; Xu, Q.; Wang, Y.; Lin, D.; Zhou, H.; Li, T. Integrated sirna design based on surveying of features associated with high rnai effectiveness. BMC Bioinformatics 2006, 7, 516, doi:10.1186/1471-2105-7-516.
[65]
Takasaki, S.; Kotani, S.; Konagaya, A. An effective method for selecting sirna target sequences in mammalian cells. Cell Cycle 2004, 3, 788–793, doi:10.4161/cc.3.6.892.
[66]
Holen, T. Efficient prediction of sirnas with sirnarules 1.0: An open-source java approach to sirna algorithms. RNA 2006, 12, 1620–1625, doi:10.1261/rna.81006.
[67]
Takasaki, S. Selecting effective sirna target sequences by using bayes’ theorem. Comput. Biol. Chem. 2009, 33, 368–372, doi:10.1016/j.compbiolchem.2009.07.009.
[68]
Katoh, T.; Suzuki, T. Specific residues at every third position of sirna shape its efficient rnai activity. Nucleic Acids Res. 2007, 35, e27, doi:10.1093/nar/gkl1120.
[69]
Seitz, H.; Tushir, J.S.; Zamore, P.D. A 5'-uridine amplifies mirna/mirna* asymmetry in drosophila by promoting rna-induced silencing complex formation. Silence 2011, 2, 4, doi:10.1186/1758-907X-2-4.
[70]
Brown, K.M.; Chu, C.Y.; Rana, T.M. Target accessibility dictates the potency of human risc. Nat. Struct. Mol. Biol. 2005, 12, 469–470, doi:10.1038/nsmb931.
[71]
Ameres, S.L.; Martinez, J.; Schroeder, R. Molecular basis for target rna recognition and cleavage by human risc. Cell 2007, 130, 101–112, doi:10.1016/j.cell.2007.04.037.
[72]
Mathews, D.; Sabina, J.; Zuker, M.; Turner, D. Expanded sequence dependence of thermodynamic parameters improves prediction of rna secondary structure. J. Mol. Biol. 1999, 288, 911–940, doi:10.1006/jmbi.1999.2700.
[73]
Ding, Y.; Chan, C.Y.; Lawrence, C.E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 2004, 32, W135–W141, doi:10.1093/nar/gkh449.
[74]
Tafer, H.; Ameres, S.L.; Obernosterer, G.; Gebeshuber, C.A.; Schroeder, R.; Martinez, J.; Hofacker, I.L. The impact of target site accessibility on the design of effective sirnas. Nat. Biotechnol. 2008, 26, 578–583, doi:10.1038/nbt1404.
[75]
Gredell, J.; Berger, A.; Walton, S. Impact of target mrna structure on sirna silencing efficiency: A large-scale study. Biotechnol. Bioeng. 2008, 100, 744–755, doi:10.1002/bit.21798.
[76]
Vickers, T.A.; Koo, S.; Bennett, C.F.; Crooke, S.T.; Dean, N.M.; Baker, B.F. Efficient reduction of target rnas by small interfering rna and rnase h-dependent antisense agents. A comparative analysis. J. Biol. Chem. 2003, 278, 7108–7118.
[77]
Bohula, E.A.; Salisbury, A.J.; Sohail, M.; Playford, M.P.; Riedemann, J.; Southern, E.M.; Macaulay, V.M. The efficacy of small interfering rnas targeted to the type 1 insulin-like growth factor receptor (igf1r) is influenced by secondary structure in the igf1r transcript. J. Biol. Chem. 2003, 278, 15991–15997, doi:10.1074/jbc.M300714200.
[78]
Overhoff, M.; Alken, M.; Far, R.K.-K.; Lemaitre, M.; Lebleu, B.; Sczakiel, G.; Robbins, I. Local rna target structure influences sirna efficacy: A systematic global analysis. J. Mol. Biol. 2005, 348, 871–881, doi:10.1016/j.jmb.2005.03.012.
[79]
Schubert, S.; Grünweller, A.; Erdmann, V.A.; Kurreck, J. Local rna target structure influences sirna efficacy: Systematic analysis of intentionally designed binding regions. J. Mol. Biol. 2005, 348, 883–893, doi:10.1016/j.jmb.2005.03.011.
[80]
Shao, Y.; Chan, C.Y.; Maliyekkel, A.; Lawrence, C.E.; Roninson, I.B.; Ding, Y. Effect of target secondary structure on rnai efficiency. RNA 2007, 13, 1631–1640, doi:10.1261/rna.546207.
[81]
Yoshinari, K.; Miyagishi, M.; Taira, K. Effects on rnai of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 2004, 32, 691–699, doi:10.1093/nar/gkh221.
[82]
Sledz, C.A.; Holko, M.; de Veer, M.J.; Silverman, R.H.; Williams, B.R.G. Activation of the interferon system by short-interfering rnas. Nat. Cell Biol. 2003, 5, 834–839, doi:10.1038/ncb1038.
[83]
Samuel-Abraham, S.; Leonard, J.N. Staying on message: Design principles for controlling nonspecific responses to sirna. FEBS J. 2010, 277, 4828–4836, doi:10.1111/j.1742-4658.2010.07905.x.
[84]
Jackson, A. Recognizing and avoiding sirna off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 2010, 9, 57–67, doi:10.1038/nrd3010.
[85]
Robbins, M.; Judge, A.; Liang, L. 2'-o-methyl-modified rnas act as tlr7 antagonists. Mol. Ther. 2007, 15, 1663–1669, doi:10.1038/sj.mt.6300240.
[86]
Kodym, R.; Kodym, E.; Story, M.D. 2'-5'-oligoadenylate synthetase is activated by a specific rna sequence motif. Biochem. Biophys. Res. Commun. 2009, 388, 317–322, doi:10.1016/j.bbrc.2009.07.167.
[87]
Manche, L.; Green, S.R.; Schmedt, C.; Mathews, M.B. Interactions between double-stranded rna regulators and the protein kinase dai. Mol. Cell. Biol. 1992, 12, 5238–5248.
[88]
Bevilacqua, P.C.; Cech, T.R. Minor-groove recognition of double-stranded rna by the double-stranded rna-binding domain from the rna-activated protein kinase pkr. Biochemistry 1996, 35, 9983–9994, doi:10.1021/bi9607259.
[89]
Marques, J.T.; Devosse, T.; Wang, D.; Zamanian-Daryoush, M.; Serbinowski, P.; Hartmann, R.; Fujita, T.; Behlke, M.A.; Williams, B.R. A structural basis for discriminating between self and nonself double-stranded rnas in mammalian cells. Nat. Biotechnol. 2006, 24, 559–565, doi:10.1038/nbt1205.
[90]
Kato, H.; Takeuchi, O.; Mikamo-Satoh, E.; Hirai, R.; Kawai, T.; Matsushita, K.; Hiiragi, A.; Dermody, T.S.; Fujita, T.; Akira, S. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-i and melanoma differentiation-associated gene 5. J. Exp. Med. 2008, 205, 1601–1610, doi:10.1084/jem.20080091.
[91]
Gantier, M.P.; Williams, B.R.G. The response of mammalian cells to double-stranded rna. Cytokine Growth Factor Rev. 2007, 18, 363–371, doi:10.1016/j.cytogfr.2007.06.016.
[92]
Nallagatla, S.R.; Hwang, J.; Toroney, R.; Zheng, X.; Cameron, C.E.; Bevilacqua, P.C. 5'-triphosphate-dependent activation of pkr by rnas with short stem-loops. Science 2007, 318, 1455–1458, doi:10.1126/science.1147347.
Weber, C.; Müller, C.; Podszuweit, A.; Montino, C.; Vollmer, J.; Forsbach, A. Toll-like receptor (tlr) 3 immune modulation by unformulated small interfering rna or DNA and the role of cd14 (in tlr-mediated effects). Immunology 2012, 136, 64–77, doi:10.1111/j.1365-2567.2012.03559.x.
[95]
Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded rna and activation of nf-kappab by toll-like receptor 3. Nature 2001, 413, 732–738, doi:10.1038/35099560.
[96]
Kariko, K.; Bhuyan, P.; Capodici, J.; Weissman, D. Small interfering rnas mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 2004, 172, 6545–6549.
[97]
Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded rna via toll-like receptor 7 and 8. Science 2004, 303, 1526–1529, doi:10.1126/science.1093620.
[98]
Judge, A.D.; Sood, V.; Shaw, J.R.; Fang, D.; McClintock, K.; MacLachlan, I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic sirna. Nat. Biotechnol. 2005, 23, 457–462, doi:10.1038/nbt1081.
Diebold, S.S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of tlr7-mediated recognition of single-stranded rna. Science 2004, 303, 1529–1531, doi:10.1126/science.1093616.
[101]
Diebold, S.S.; Massacrier, C.; Akira, S.; Paturel, C.; Morel, Y.; Reis e Sousa, C. Nucleic acid agonists for toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 2006, 36, 3256–3267, doi:10.1002/eji.200636617.
[102]
Goodchild, A.; Nopper, N.; King, A.; Doan, T.; Tanudji, M.; Arndt, G.M.; Poidinger, M.; Rivory, L.P.; Passioura, T. Sequence determinants of innate immune activation by short interfering rnas. BMC Immunol. 2009, 10.
[103]
Kleinman, M.E.; Yamada, K.; Takeda, A.; Chandrasekaran, V.; Nozaki, M.; Baffi, J.Z.; Albuquerque, R.J.C.; Yamasaki, S.; Itaya, M.; Pan, Y.; Appukuttan, B.; Gibbs, D.; Yang, Z.; Karikó, K.; Ambati, B.K.; Wilgus, T.A.; DiPietro, L.A.; Sakurai, E.; Zhang, K.; Smith, J.R.; Taylor, E.W.; Ambati, J. Sequence- and target-independent angiogenesis suppression by sirna via tlr3. Nature 2008, 452, 591–597, doi:10.1038/nature06765.
[104]
Reynolds, A.; Anderson, E.M.; Vermeulen, A.; Fedorov, Y.; Robinson, K.; Leake, D.; Karpilow, J.; Marshall, W.S.; Khvorova, A. Induction of the interferon response by sirna is cell type- and duplex length-dependent. RNA 2006, 12, 988–993, doi:10.1261/rna.2340906.
[105]
Forsbach, A.; Nemorin, J.-G.; Montino, C.; Müller, C.; Samulowitz, U.; Vicari, A.P.; Jurk, M.; Mutwiri, G.K.; Krieg, A.M.; Lipford, G.B.; Vollmer, J. Identification of rna sequence motifs stimulating sequence-specific tlr8-dependent immune responses. J. Immunol. 2008, 180, 3729–3738.
[106]
Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded sirnas is sequence-dependent and requires endosomal localization. J. Mol. Biol. 2005, 348, 1079–1090, doi:10.1016/j.jmb.2005.03.013.
[107]
Hornung, V.; Guenthner-Biller, M.; Bourquin, C.; Ablasser, A.; Schlee, M.; Uematsu, S.; Noronha, A.; Manoharan, M.; Akira, S.; de Fougerolles, A.; Endres, S.; Hartmann, G. Sequence-specific potent induction of ifn-α by short interfering rna in plasmacytoid dendritic cells through tlr7. Nat. Med. 2005, 11, 263–270, doi:10.1038/nm1191.
[108]
Jurk, M.; Chikh, G.; Schulte, B.; Kritzler, A.; Richardt-Pargmann, D.; Lampron, C.; Luu, R.; Krieg, A.M.; Vicari, A.P.; Vollmer, J. Immunostimulatory potential of silencing rnas can be mediated by a non-uridine-rich toll-like receptor 7 motif. Nucleic Acid Ther. 2011, 21, 201–214.
Shafer, R.H.; Smirnov, I. Biological aspects of DNA/rna quadruplexes. Biopolymers 2000, 56, 209–227, doi:10.1002/1097-0282(2000/2001)56:3<209::AID-BIP10018>3.0.CO;2-Y.
[111]
Doench, J.G.; Petersen, C.P.; Sharp, P.A. Sirnas can function as mirnas. Genes Dev. 2003, 17, 438–442, doi:10.1101/gad.1064703.
[112]
Lambert, N.J.; Gu, S.G.; Zahler, A.M. The conformation of microrna seed regions in native micrornps is prearranged for presentation to mrna targets. Nucleic Acids Res. 2011, 39, 4827–4835, doi:10.1093/nar/gkr077.
[113]
Gu, S.; Jin, L.; Zhang, F.; Huang, Y.; Grimm, D.; Rossi, J.J.; Kay, M.A. Thermodynamic stability of small hairpin rnas highly influences the loading process of different mammalian argonautes. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 9208–9213.
[114]
Bartel, D. Micrornas: Target recognition and regulatory functions. Cell 2009, 136, 215–233, doi:10.1016/j.cell.2009.01.002.
Lin, X.; Ruan, X.; Anderson, M.G.; Mcdowell, J.A.; Kroeger, P.E.; Fesik, S.W.; Shen, Y. Sirna-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005, 33, 4527, doi:10.1093/nar/gki762.
[117]
Lai, E.C. Micro rnas are complementary to 3 ' utr sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30, 363–364, doi:10.1038/ng865.
[118]
Schultz, N.; Marenstein, D.R.; De Angelis, D.A.; Wang, W.-Q.; Nelander, S.; Jacobsen, A.; Marks, D.S.; Massagué, J.; Sander, C. Off-target effects dominate a large-scale rnai screen for modulators of the tgf-β pathway and reveal microrna regulation of tgfbr2. Silence 2011, 2, 3, doi:10.1186/1758-907X-2-3.
[119]
Didiano, D.; Hobert, O. Perfect seed pairing is not a generally reliable predictor for mirna-target interactions. Nat. Struct. Mol. Biol. 2006, 13, 849–851, doi:10.1038/nsmb1138.
[120]
Doench, J.G.; Sharp, P.A. Specificity of microrna target selection in translational repression. Genes Dev. 2004, 18, 504–511, doi:10.1101/gad.1184404.
[121]
Broderick, J.A.; Salomon, W.E.; Ryder, S.P.; Aronin, N.; Zamore, P.D. Argonaute protein identity and pairing geometry determine cooperativity in mammalian rna silencing. RNA 2011, 17, 1858–1869, doi:10.1261/rna.2778911.
[122]
Kozomara, A.; Griffiths-Jones, S. Mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157, doi:10.1093/nar/gkq1027.
Sudbery, I.; Enright, A.J.; Fraser, A.G.; Dunham, I. Systematic analysis of off-target effects in an rnai screen reveals micrornas affecting sensitivity to trail-induced apoptosis. BMC Genomics 2010, 11, 175.
[125]
Anderson, E.M.; Birmingham, A.; Baskerville, S.; Reynolds, A.; Maksimova, E.; Leake, D.; Fedorov, Y.; Karpilow, J.; Khvorova, A. Experimental validation of the importance of seed complement frequency to sirna specificity. RNA 2008, 14, 853–861, doi:10.1261/rna.704708.
[126]
Snove, O.; Holen, T. Many commonly used sirnas risk off-target activity. Biochem. Biophys. Res. Commun. 2004, 319, 256–263, doi:10.1016/j.bbrc.2004.04.175.
[127]
Holen, T.; Moe, S.E.; Sorbo, J.G.; Meza, T.J.; Ottersen, O.P.; Klungland, A. Tolerated wobble mutations in sirnas decrease specificity, but can enhance activity in vivo. Nucleic Acids Res. 2005, 33, 4704–4710, doi:10.1093/nar/gki785.
[128]
Schwarz, D.S.; Ding, H.; Kennington, L.; Moore, J.T.; Schelter, J.; Burchard, J.; Linsley, P.S.; Aronin, N.; Xu, Z.; Zamore, P.D. Designing sirna that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2006, 2, 1307–1318.
[129]
Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread sirna “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006, 12, 1179–1187, doi:10.1261/rna.25706.
[130]
Saxena, S.; Jónsson, Z.O.; Dutta, A. Small rnas with imperfect match to endogenous mrna repress translation. Implications for off-target activity of small inhibitory rna in mammalian cells. J. Biol. Chem. 2003, 278, 44312–44319, doi:10.1074/jbc.M307089200.
[131]
Scacheri, P.C.; Rozenblatt-Rosen, O.; Caplen, N.J.; Wolfsberg, T.G.; Umayam, L.; Lee, J.C.; Hughes, C.M.; Shanmugam, K.S.; Bhattacharjee, A.; Meyerson, M. Short interfering rnas can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1892–1897, doi:10.1073/pnas.0308698100.
[132]
Aleman, L.M.; Doench, J.; Sharp, P.A. Comparison of sirna-induced off-target rna and protein effects. RNA 2007, 13, 385–395, doi:10.1261/rna.352507.
[133]
Liu, J.; Valencia-Sanchez, M.A.; Hannon, G.J.; Parker, R. Microrna-dependent localization of targeted mrnas to mammalian p-bodies. Nat. Cell Biol. 2005, 7, 719–723, doi:10.1038/ncb1274.
[134]
Teixeira, D.; Sheth, U.; Valencia-Sanchez, M.A.; Brengues, M.; Parker, R. Processing bodies require rna for assembly and contain nontranslating mrnas. RNA 2005, 11, 371–382, doi:10.1261/rna.7258505.
[135]
Behm-Ansmant, I.; Rehwinkel, J.; Izaurralde, E. Micrornas silence gene expression by repressing protein expression and/or by promoting mrna decay. Cold Spring Harb. Symp. Quant. Biol. 2006, 71, 523–530, doi:10.1101/sqb.2006.71.013.
[136]
Semizarov, D.; Frost, L.; Sarthy, A.; Kroeger, P.; Halbert, D.N.; Fesik, S.W. Specificity of short interfering rna determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 2003, 100, 6347–6352, doi:10.1073/pnas.1131959100.
[137]
Persengiev, S.P.; Zhu, X.; Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering rnas (sirnas). RNA 2004, 10, 12–18, doi:10.1261/rna5160904.
[138]
Wilson, P.A.; Plucinski, M. A simple bayesian estimate of direct rnai gene regulation events from differential gene expression profiles. BMC Genomics 2011, 12, 250, doi:10.1186/1471-2164-12-250.
[139]
Sydor, J.R.; Nock, S. Protein expression profiling arrays: Tools for the multiplexed high-throughput analysis of proteins. Proteome Sci. 2003, 1, 3, doi:10.1186/1477-5956-1-3.
[140]
Pan, S.; Aebersold, R.; Chen, R.; Rush, J.; Goodlett, D.R.; McIntosh, M.W.; Zhang, J.; Brentnall, T.A. Mass spectrometry based targeted protein quantification: Methods and applications. J. Proteome Res. 2009, 8, 787–797, doi:10.1021/pr800538n.
Kittler, R.; Surendranath, V.; Heninger, A.-K.; Slabicki, M.; Theis, M.; Putz, G.; Franke, K.; Caldarelli, A.; Grabner, H.; Kozak, K.; et al. Genome-wide resources of endoribonuclease-prepared short interfering rnas for specific loss-of-function studies. Nat. Methods 2007, 4, 337–344.
[143]
Parker, J.S.; Parizotto, E.A.; Wang, M.; Roe, S.M.; Barford, D. Enhancement of the seed-target recognition step in rna silencing by a piwi/mid domain protein. Mol. Cell 2009, 33, 204–214, doi:10.1016/j.molcel.2008.12.012.
[144]
Birmingham, A.; Anderson, E.M.; Reynolds, A.; Ilsley-Tyree, D.; Leake, D.; Fedorov, Y.; Baskerville, S.; Maksimova, E.; Robinson, K.; Karpilow, J.; Marshall, W.S.; Khvorova, A. 3' UTR seed matches, but not overall identity, are associated with rnai off-targets. Nat. Methods 2006, 3, 199–204, doi:10.1038/nmeth854.
[145]
Boland, A.; Tritschler, F.; Heimst Auml Dt, S.; Izaurralde, E.; Weichenrieder, O. Crystal structure and ligand binding of the mid domain of a eukaryotic argonaute protein. EMBO Rep. 2010, 11, 522–527, doi:10.1038/embor.2010.81.
[146]
Ma, J.-B.; Ye, K.; Patel, D.J. Structural basis for overhang-specific small interfering rna recognition by the paz domain. Nature 2004, 429, 318–322, doi:10.1038/nature02519.
[147]
Lingel, A.; Simon, B.; Izaurralde, E.; Sattler, M. Nucleic acid 3'-end recognition by the argonaute2 paz domain. Nat. Struct. Mol. Biol. 2004, 11, 576–577, doi:10.1038/nsmb777.
[148]
Sashital, D.G.; Doudna, J.A. Structural insights into rna interference. Curr. Opin. Struct. Biol. 2010, 20, 90–97, doi:10.1016/j.sbi.2009.12.001.
[149]
Vert, J.-P.; Foveau, N.; Lajaunie, C.; Vandenbrouck, Y. An accurate and interpretable model for sirna efficacy prediction. BMC Bioinformatics 2006, 7, 520, doi:10.1186/1471-2105-7-520.
K?berle, C.; Kaufmann, S.H.E.; Patzel, V. Selecting effective sirnas based on guide rna structure. Nat. Protoc. 2006, 1, 1832–1839, doi:10.1038/nprot.2006.206.
[152]
Hossbach, M.; Gruber, J.; Osborn, M.; Weber, K.; Tuschl, T. Gene silencing with sirna duplexes composed of target-mrna-complementary and partially palindromic or partially complementary single-stranded sirnas. RNA Biol. 2006, 3, 82–89, doi:10.4161/rna.3.2.3110.
[153]
Vermeulen, A.; Behlen, L.; Reynolds, A.; Wolfson, A.; Marshall, W.S.; Karpilow, J.; Khvorova, A. The contributions of dsrna structure to dicer specificity and efficiency. RNA 2005, 11, 674–682, doi:10.1261/rna.7272305.
Snead, N.M.; Rossi, J.J. Rna interference trigger variants: Getting the most out of rna for rna interference-based therapeutics. Nucleic Acid Ther. 2012, 22, 139–146.
Holen, T.; Amarzguioui, M.; Babaie, E.; Prydz, H. Similar behaviour of single-strand and double-strand sirnas suggests they act through a common rnai pathway. Nucleic Acids Res. 2003, 31, 2401–2407, doi:10.1093/nar/gkg338.
Hohjoh, H. Enhancement of rnai activity by improved sirna duplexes. FEBS Lett. 2004, 557, 193–198, doi:10.1016/S0014-5793(03)01492-3.
[164]
Bramsen, J.B.; Laursen, M.B.; Damgaard, C.K.; Lena, S.W.; Babu, B.R.; Wengel, J.; Kjems, J. Improved silencing properties using small internally segmented interfering rnas. Nucleic Acids Res. 2007, 35, 5886–5897, doi:10.1093/nar/gkm548.
[165]
Dua, P.; Yoo, J.W.; Kim, S.; Lee, D.-K. Modified sirna structure with a single nucleotide bulge overcomes conventional sirna-mediated off-target silencing. Mol. Ther. 2011, 19, 1676–1687, doi:10.1038/mt.2011.109.
[166]
Amarzguioui, M.; Lundberg, P.; Cantin, E.; Hagstrom, J.; Behlke, M.A.; Rossi, J.J. Rational design and in vitro and in vivo delivery of dicer substrate sirna. Nat. Protoc. 2006, 1, 508–517, doi:10.1038/nprot.2006.72.
[167]
Collingwood, M.A.; Rose, S.D.; Huang, L.; Hillier, C.; Amarzguioui, M.; Wiiger, M.T.; Soifer, H.S.; Rossi, J.J.; Behlke, M.A. Chemical modification patterns compatible with high potency dicer-substrate small interfering rnas. Oligonucleotides 2008, 18, 187–200, doi:10.1089/oli.2008.0123.
[168]
Tanudji, M.; Machalek, D.; Arndt, G.M.; Rivory, L. Competition between sirna duplexes: Impact of rna-induced silencing complex loading efficiency and comparison between conventional-21 bp and dicer-substrate sirnas. Oligonucleotides 2010, 20, 27–32, doi:10.1089/oli.2009.0195.
[169]
Foster, D.J.; Barros, S.; Duncan, R.; Shaikh, S.; Cantley, W.; Dell, A.; Bulgakova, E.; O’Shea, J.; Taneja, N.; Kuchimanchi, S.; et al. Comprehensive evaluation of canonical versus dicer-substrate sirna in vitro and in vivo. RNA 2012, 18, 557–568, doi:10.1261/rna.031120.111.
[170]
Turner, J.J.; Jones, S.W.; Moschos, S.A.; Lindsay, M.A.; Gait, M.J. Maldi-tof mass spectral analysis of sirna degradation in serum confirms an rnase a-like activity. Mol. Biosyst. 2006, 3, 43–50.
Chiu, Y.-L.; Rana, T.M. Sirna function in rnai: A chemical modification analysis. RNA 2003, 9, 1034–1048, doi:10.1261/rna.5103703.
[178]
Manoharan, M.; Akinc, A.; Pandey, R.K.; Qin, J.; Hadwiger, P.; John, M.; Mills, K.; Charisse, K.; Maier, M.A.; Nechev, L.; et al. Unique gene-silencing and structural properties of 2'-fluoro-modified sirnas. Angew. Chem. Int. Ed. Engl. 2011, 50, 2284–2288.
[179]
Cekaite, L.; Furset, G.; Hovig, E.; Sioud, M. Gene expression analysis in blood cells in response to unmodified and 2-modified sirnas reveals tlr-dependent and independent effects. J. Mol. Biol. 2007, 365, 90–108, doi:10.1016/j.jmb.2006.09.034.
[180]
Tluk, S.; Jurk, M.; Forsbach, A.; Weeratna, R.; Samulowitz, U.; Krieg, A.M.; Bauer, S.; Vollmer, J. Sequences derived from self-rna containing certain natural modifications act as suppressors of rna-mediated inflammatory immune responses. Int. Immunol. 2009, 21, 607–619, doi:10.1093/intimm/dxp030.
[181]
Fucini, R.V.; Haringsma, H.J.; Deng, P.; Flanagan, W.M.; Willingham, A.T. Adenosine modification may be preferred for reducing sirna immune stimulation. Nucleic Acid Ther. 2012, 22, 205–210.
[182]
Haupenthal, J.; Baehr, C.; Kiermayer, S.; Zeuzem, S.; Piiper, A. Inhibition of rnase a family enzymes prevents degradation and loss of silencing activity of sirnas in serum. Biochem. Pharmacol. 2006, 71, 702–710, doi:10.1016/j.bcp.2005.11.015.
[183]
Amarzguioui, M. Tolerance for mutations and chemical modifications in a sirna. Nucleic Acids Res. 2003, 31, 589–595, doi:10.1093/nar/gkg147.
[184]
Yang, X.; Sierant, M.; Janicka, M.; Peczek, L.; Martinez, C.; Hassell, T.; Li, N.; Li, X.; Wang, T.; Nawrot, B. Gene silencing activity of sirna molecules containing phosphorodithioate substitutions. ACS Chem. Biol. 2012, 7, 1214–1220, doi:10.1021/cb300078e.
[185]
Bramsen, J.B.; Kjems, J. Development of therapeutic-grade small interfering rnas by chemical engineering. Front. Genet. 2012, 3, 154–154.
[186]
Wang, J.; Byrne, J.D.; Napier, M.E.; DeSimone, J.M. More effective nanomedicines through particle design. Small 2011, 7, 1919–1931, doi:10.1002/smll.201100442.
[187]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561, doi:10.1039/c2cs15327k.
[188]
Siegwart, D.J.; Whitehead, K.A.; Nuhn, L.; Sahay, G.; Cheng, H.; Jiang, S.; Ma, M.; Lytton-Jean, A.; Vegas, A.; Fenton, P.; et al. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 12996–13001, doi:10.1073/pnas.1106379108.
[189]
Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864, doi:10.1002/polb.22259.
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599, doi:10.1016/j.tips.2009.08.004.
[193]
Mutlu, G.M.; Budinger, G.R.S.; Green, A.A.; Urich, D.; Soberanes, S.; Chiarella, S.E.; Alheid, G.F.; McCrimmon, D.R.; Szleifer, I.; Hersam, M.C. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 2010, 10, 1664–1670, doi:10.1021/nl9042483.
[194]
Cheung, W.; Pontoriero, F.; Taratula, O.; Chen, A.M.; He, H.X. DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev. 2010, 62, 633–649, doi:10.1016/j.addr.2010.03.007.
[195]
Dobrovolskaia, M.A.; Aggarwal, P.; Hall, J.B.; McNeil, S.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008, 5, 487–495, doi:10.1021/mp800032f.
[196]
Li, Y.; Sun, L.; Jin, M.; Du, Z.; Liu, X.; Guo, C.; Li, Y.; Huang, P.; Sun, Z. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma hepg2 cells. Toxicol. In Vitro 2011, 25, 1343–1352, doi:10.1016/j.tiv.2011.05.003.
[197]
Slowing, I.I.; Trewyn, B.G.; Giri, S.; Lin, V.S.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236, doi:10.1002/adfm.200601191.
[198]
Asefa, T.; Tao, Z. Biocompatibility of mesoporous silica nanoparticles. Chem. Res. Toxicol. 2012, 25, 2265–2284, doi:10.1021/tx300166u.
[199]
Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutierrez, L.; Morales, M.P.; Bohm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306–4334, doi:10.1039/c2cs15337h.
[200]
Prijic, S.; Sersa, G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol. 2011, 45, 1–16, doi:10.2478/v10019-011-0001-z.
[201]
Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671, doi:10.1039/c0cs00018c.
[202]
Cho, E.C.; Zhang, Q.; Xia, Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 2011, 6, 385–391.
[203]
Kong, W.H.; Bae, K.H.; Jo, S.D.; Kim, J.S.; Park, T.G. Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular sirna delivery vehicles. Pharm. Res. 2012, 29, 362–374, doi:10.1007/s11095-011-0554-y.
[204]
Daka, A.; Peer, D. Rnai-based nanomedicines for targeted personalized therapy. Adv. Drug Deliv. Rev. 2012, 64, 1508–1521, doi:10.1016/j.addr.2012.08.014.
[205]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imagin. Nanomedicine 2012, 8, 147–166, doi:10.1016/j.nano.2011.05.016.
[206]
Burnett, J.C.; Rossi, J.J. Rna-based therapeutics: Current progress and future prospects. Chem. Biol. 2012, 19, 60–71.
[207]
De Ilarduya, C.T.; Sun, Y.; Duezguenes, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 2010, 40, 159–170.
[208]
De Planque, M.R.R.; Aghdaei, S.; Roose, T.; Morgan, H. Electrophysiological characterization of membrane disruption by nanoparticles. ACS Nano 2011, 5, 3599–3606, doi:10.1021/nn103320j.
[209]
Khalil, I.A.; Kogure, K.; Akita, H.; Harashima, H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 2006, 58, 32–45, doi:10.1124/pr.58.1.8.
[210]
Ding, H.M.; Tian, W.D.; Ma, Y.Q. Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 2012, 6, 1230–1238, doi:10.1021/nn2038862.
[211]
Huotari, J.; Helenius, A. Endosome maturation. EMBO J. 2011, 30, 3481–3500, doi:10.1038/emboj.2011.286.
Rejman, J.; Bragonzi, A.; Conese, M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 2005, 12, 468–474, doi:10.1016/j.ymthe.2005.03.038.
[216]
Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine 2012, 7, 5577–5591, doi:10.2147/IJN.S36111.
[217]
Goncalves, C.; Mennesson, E.; Fuchs, R.; Gorvel, J.P.; Midoux, P.; Pichon, C. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol. Ther. 2004, 10, 373–385, doi:10.1016/j.ymthe.2004.05.023.
[218]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002, 54, 631–651, doi:10.1016/S0169-409X(02)00044-3.
Venturoli, D.; Rippe, B. Ficoll and dextran vs. Globular proteins as probes for testing glomerular permselectivity: Effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal Physiol. 2005, 288, F605–F613, doi:10.1152/ajprenal.00171.2004.
[221]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627, doi:10.1038/nrd2591.
[222]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822, doi:10.1126/science.1095833.
[223]
Vonarbourg, A.; Passirani, C.; Saulnier, P.; Benoit, J.P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 2006, 27, 4356–4373, doi:10.1016/j.biomaterials.2006.03.039.
[224]
Doshi, N.; Mitragotri, S. Macrophages recognize size and shape of their targets. PLoS ONE 2010, 5, e10051, doi:10.1371/journal.pone.0010051.
[225]
Decuzzi, P.; Pasqualini, R.; Arap, W.; Ferrari, M. Intravascular delivery of particulate systems: Does geometry really matter? Pharm. Res. 2009, 26, 235–243, doi:10.1007/s11095-008-9697-x.
[226]
Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934, doi:10.1073/pnas.0600997103.
[227]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666, doi:10.1016/j.biomaterials.2010.01.065.
[228]
Galvin, P.; Thompson, D.; Ryan, K.B.; McCarthy, A.; Moore, A.C.; Burke, C.S.; Dyson, M.; MacCraith, B.D.; Gun’ko, Y.K.; Byrne, M.T.; et al. Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications. Cell. Mol. Life Sci. 2012, 69, 389–404, doi:10.1007/s00018-011-0856-6.
[229]
Schipper, M.L.; Iyer, G.; Koh, A.L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L.A.; Li, J.Q.; Rao, J.H.; et al. Particle size, surface coating, and pegylation influence the biodistribution of quantum dots in living mice. Small 2009, 5, 126–134, doi:10.1002/smll.200800003.
[230]
Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341, doi:10.1016/j.ejpb.2004.02.016.
[231]
Dufort, S.; Sancey, L.; Coll, J.L. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv. Drug Deliv. Rev. 2012, 64, 179–189, doi:10.1016/j.addr.2011.09.009.
[232]
Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H. Early phase tumor accumulation of macromolecules: A great difference in clearance rate between tumor and normal tissues. Jpn. J. Cancer Res. 1998, 89, 307–314, doi:10.1111/j.1349-7006.1998.tb00563.x.
[233]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the epr effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284, doi:10.1016/S0168-3659(99)00248-5.
[234]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626, doi:10.1016/j.addr.2008.08.005.
[235]
Singh, S.; Sharma, A.; Robertson, G.P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res. 2012, 72, 5663–5668, doi:10.1158/0008-5472.CAN-12-1527.
[236]
Lo, A.; Lin, C.-T.; Wu, H.-C. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther. 2008, 7, 579–589, doi:10.1158/1535-7163.MCT-07-2359.
[237]
Yan, H.B.; Tram, K. Glycotargeting to improve cellular delivery efficiency of nucleic acids. Glycoconj. J. 2007, 24, 107–123, doi:10.1007/s10719-006-9023-y.
[238]
Vaishnaw, A.K.; Gollob, J.; Gamba-Vitalo, C.; Hutabarat, R.; Sah, D.; Meyers, R.; de Fougerolles, T.; Maraganore, J. A status report on rnai therapeutics. Silence 2010, 1, 14, doi:10.1186/1758-907X-1-14.
[239]
De Fougerolles, A.R. Delivery vehicles for small interfering rna in vivo. Hum. Gene Ther. 2008, 19, 125–132, doi:10.1089/hum.2008.928.
[240]
Wu, Y.; Ho, Y.P.; Mao, Y.C.; Wang, X.M.; Yu, B.; Leong, K.W.; Lee, L.J. Uptake and intracellular fate of multifunctional nanoparticles: A comparison between lipoplexes and polyplexes via quantum dot mediated forster resonance energy transfer. Mol. Pharm. 2011, 8, 1662–1668, doi:10.1021/mp100466m.
[241]
Strumberg, D.; Schultheis, B.; Traugott, U.; Vank, C.; Santel, A.; Keil, O.; Giese, K.; Kaufmann, J.; Drevs, J. Phase i clinical development of atu027, a sirna formulation targeting pkn3 in patients with advanced solid tumors. Int. J. Clin. Pharmacol. Ther. 2012, 50, 76–78.
[242]
Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic liposomal lipids: From gene carriers to cell signaling. Prog. Lipid Res. 2008, 47, 340–347, doi:10.1016/j.plipres.2008.03.002.
[243]
Barros, S.A.; Gollob, J.A. Safety profile of rnai nanomedicines. Adv. Drug Deliv. Rev. 2012, 64, 1730–1737, doi:10.1016/j.addr.2012.06.007.
[244]
Davis, M.E. The first targeted delivery of sirna in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm. 2009, 6, 659–668, doi:10.1021/mp900015y.
[245]
Heidel, J.D.; Davis, M.E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 2011, 28, 187–199, doi:10.1007/s11095-010-0178-7.
[246]
Rozema, D.B.; Lewis, D.L.; Wakefield, D.H.; Wong, S.C.; Klein, J.J.; Roesch, P.L.; Bertin, S.L.; Reppen, T.W.; Chu, Q.; Blokhin, A.V.; et al. Dynamic polyconjugates for targetedin vivo delivery of sirna to hepatocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 12982–12987.
[247]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347, doi:10.1016/S0169-409X(02)00228-4.
[248]
Reilly, M.J.; Larsen, J.D.; Sullivan, M.O. Histone h3 tail peptides and poly(ethylenimine) have synergistic effects for gene delivery. Mol. Pharm. 2012, 9, 1031–1040.