Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.
References
[1]
Sifuentes-Romero, I.; Milton, S.L.; Garcia-Gasca, A. Post-transcriptional gene silencing by rna interference in non-mammalian vertebrate systems: Where do we stand? Mutat. Res. 2011, 728, 158–171, doi:10.1016/j.mrrev.2011.09.001.
[2]
Mello, C.C.; Conte, D., Jr. Revealing the world of rna interference. Nature 2004, 431, 338–342.
[3]
Monaghan, M.; Pandit, A. Rna interference therapy via functionalized scaffolds. Adv. Drug Deliver. Rev. 2011, 63, 197–208, doi:10.1016/j.addr.2011.01.006.
Cerutti, H. Rna interference: Traveling in the cell and gaining functions? Trends Genet. 2003, 19, 39–46, doi:10.1016/S0168-9525(02)00010-0.
[6]
Capecchi, M.R. Altering the genome by homologous recombination. Science 1989, 244, 1288–1292.
[7]
Aagaard, L.; Rossi, J.J. Rnai therapeutics: Principles, prospects and challenges. Adv. Drug Deliver. Rev. 2007, 59, 75–86, doi:10.1016/j.addr.2007.03.005.
[8]
Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D.W. Rnai therapeutics: A potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2006, 2, 711–719, doi:10.1038/nchembio839.
[9]
Daka, A.; Peer, D. Rnai-based nanomedicines for targeted personalized therapy. Adv. Drug Deliver Rev. 2012, 64, 1508–1521, doi:10.1016/j.addr.2012.08.014.
[10]
Scherer, L.J.; Rossi, J.J. Approaches for the sequence-specific knockdown of mrna. Nat. Biotechnol. 2003, 21, 1457–1465, doi:10.1038/nbt915.
[11]
Bertrand, J.R.; Pottier, M.; Vekris, A.; Opolon, P.; Maksimenko, A.; Malvy, C. Comparison of antisense oligonucleotides and sirnas in cell culture and in vivo. Biochem. Biophys. Res. Commun. 2002, 296, 1000–1004, doi:10.1016/S0006-291X(02)02013-2.
[12]
Sontheimer, E.J. Assembly and function of rna silencing complexes. Nat. Rev. Mol. Cell Biol. 2005, 6, 127–138, doi:10.1038/nrm1568.
[13]
Braasch, D.A.; Paroo, Z.; Constantinescu, A.; Ren, G.; Oz, O.K.; Mason, R.P.; Corey, D.R. Biodistribution of phosphodiester and phosphorothioate sirna. Bioorg. Med. Chem. Lett. 2004, 14, 1139–1143.
[14]
Urban-Klein, B.; Werth, S.; Abuharbeid, S.; Czubayko, F.; Aigner, A. Rnai-mediated gene-targeting through systemic application of polyethylenimine (pei)-complexed sirna in vivo. Gene Ther. 2005, 12, 461–466, doi:10.1038/sj.gt.3302425.
[15]
Higuchi, Y.; Kawakami, S.; Hashida, M. Strategies for in vivo delivery of sirnas: Recent progress. BioDrugs 2010, 24, 195–205, doi:10.2165/11534450-000000000-00000.
[16]
Nguyen, J.; Szoka, F.C. Nucleic acid delivery: The missing pieces of the puzzle? Accounts Chem. Res. 2012, 45, 1153–1162, doi:10.1021/ar3000162.
[17]
Shen, H.; Sun, T.; Ferrari, M. Nanovector delivery of sirna for cancer therapy. Cancer Gene Ther. 2012, 19, 367–373, doi:10.1038/cgt.2012.22.
[18]
Nimesh, S. Polyethylenimine as a promising vector for targeted sirna delivery. Curr. Clin. Pharmacol. 2012, 7, 121–130, doi:10.2174/157488412800228857.
[19]
Nimesh, S.; Gupta, N.; Chandra, R. Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids. J. Biomed. Nanotechnol. 2011, 7, 504–520, doi:10.1166/jbn.2011.1313.
[20]
Posadas, I.; Guerra, F.J.; Cena, V. Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine 2010, 5, 1219–1236, doi:10.2217/nnm.10.105.
[21]
Gao, Y.; Liu, X.L.; Li, X.R. Research progress on sirna delivery with nonviral carriers. Int. J. Nanomed. 2011, 6, 1017–1025.
[22]
Akhtar, S. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: A focus on toxicogenomics. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1347–1362, doi:10.1517/17425255.2010.518611.
[23]
Shuai, L.; Wang, S.; Zhang, L.; Fu, B.; Zhou, X. Cationic porphyrins and analogues as new DNA topoisomerase i and ii inhibitors. Chem. Biodivers 2009, 6, 827–837, doi:10.1002/cbdv.200800083.
[24]
Gopalakrishnan, B.; Wolff, J. Sirna and DNA transfer to cultured cells. Methods Mol. Biol. 2009, 480, 31–52, doi:10.1007/978-1-59745-429-2_3.
[25]
Lungwitz, U.; Breunig, M.; Blunk, T.; Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005, 60, 247–266, doi:10.1016/j.ejpb.2004.11.011.
[26]
Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Simple modifications of branched pei lead to highly efficient sirna carriers with low toxicity. Bioconjug. Chem. 2008, 19, 1448–1455, doi:10.1021/bc800065f.
[27]
Tseng, Y.C.; Mozumdar, S.; Huang, L. Lipid-based systemic delivery of sirna. Adv. Drug Deliv. Rev. 2009, 61, 721–731, doi:10.1016/j.addr.2009.03.003.
[28]
Wu, Z.W.; Chien, C.T.; Liu, C.Y.; Yan, J.Y.; Lin, S.Y. Recent progress in copolymer-mediated sirna delivery. J. Drug Target. 2012, 20, 551–560, doi:10.3109/1061186X.2012.699057.
[29]
Zhou, J.; Wu, J.; Hafdi, N.; Behr, J.P.; Erbacher, P.; Peng, L. Pamam dendrimers for efficient sirna delivery and potent gene silencing. Chem. Commun. 2006, 22, 2362–2364.
[30]
Jafari, M.; Soltani, M.; Naahidi, S.; Karunaratne, D.N.; Chen, P. Nonviral approach for targeted nucleic acid delivery. Curr. Med. Chem. 2012, 19, 197–208, doi:10.2174/092986712803414141.
[31]
Tros de Ilarduya, C.; Sun, Y.; Düzgüne?, N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 2010, 40, 159–170, doi:10.1016/j.ejps.2010.03.019.
[32]
Zhang, X.X.; McIntosh, T.J.; Grinstaff, M.W. Functional lipids and lipoplexes for improved gene delivery. Biochimie 2012, 94, 42–58, doi:10.1016/j.biochi.2011.05.005.
[33]
Lu, J.J.; Langer, R.; Chen, J. A novel mechanism is involved in cationic lipid-mediated functional sirna delivery. Mol. Pharm. 2009, 6, 763–771, doi:10.1021/mp900023v.
[34]
Boas, U.; Heegaard, P.M. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63.
[35]
Cheng, Y.; Wang, J.; Rao, T.; He, X.; Xu, T. Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Front. Biosci. 2008, 13, 1447–1471, doi:10.2741/2774.
[36]
Dufes, C.; Uchegbu, I.F.; Schatzlein, A.G. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005, 57, 2177–2202, doi:10.1016/j.addr.2005.09.017.
[37]
Eichman, J.D.; Bielinska, A.U.; Kukowska-Latallo, J.F.; Baker, J.R., Jr. The use of pamam dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technolo. Today 2000, 3, 232–245, doi:10.1016/S1461-5347(00)00273-X.
[38]
Gao, Y.; Gao, G.; He, Y.; Liu, T.; Qi, R. Recent advances of dendrimers in delivery of genes and drugs. Mini Rev. Med. Chem. 2008, 8, 889–900, doi:10.2174/138955708785132729.
[39]
Haensler, J.; Szoka, F.C., Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 1993, 4, 372–379, doi:10.1021/bc00023a012.
[40]
Gillies, E.R.; Frechet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 2005, 10, 35–43, doi:10.1016/S1359-6446(04)03276-3.
[41]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. Microrna genes are transcribed by rna polymerase ii. EMBO J. 2004, 23, 4051–4060, doi:10.1038/sj.emboj.7600385.
Provost, P.; Dishart, D.; Doucet, J.; Frendewey, D.; Samuelsson, B.; Radmark, O. Ribonuclease activity and rna binding of recombinant human dicer. EMBO J. 2002, 21, 5864–5874, doi:10.1093/emboj/cdf578.
[44]
Macrae, I.J.; Zhou, K.; Li, F.; Repic, A.; Brooks, A.N.; Cande, W.Z.; Adams, P.D.; Doudna, J.A. Structural basis for double-stranded rna processing by dicer. Science 2006, 311, 195–198.
[45]
Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature 2001, 411, 494–498, doi:10.1038/35078107.
[46]
Potti, A.; Schilsky, R.L.; Nevins, J.R. Refocusing the war on cancer: The critical role of personalized treatment. Sci. Transl. Med. 2010, 2, 28cm13, doi:10.1126/scitranslmed.3000643.
Van de Water, F.M.; Boerman, O.C.; Wouterse, A.C.; Peters, J.G.; Russel, F.G.; Masereeuw, R. Intravenously administered short interfering rna accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab. Dispos. 2006, 34, 1393–1397, doi:10.1124/dmd.106.009555.
[59]
Sledz, C.A.; Williams, B.R. Rna interference in biology and disease. Blood 2005, 106, 787–794, doi:10.1182/blood-2004-12-4643.
[60]
Kariko, K.; Bhuyan, P.; Capodici, J.; Weissman, D. Small interfering rnas mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 2004, 172, 6545–6549.
Jeong, J.H.; Park, T.G.; Kim, S.H. Self-assembled and nanostructured sirna delivery systems. Pharm. Res. 2011, 28, 2072–2085, doi:10.1007/s11095-011-0412-y.
[63]
Merkel, O.M.; Mintzer, M.A.; Librizzi, D.; Samsonova, O.; Dicke, T.; Sproat, B.; Garn, H.; Barth, P.J.; Simanek, E.E.; Kissel, T. Triazine dendrimers as nonviral vectors for in vitro and in vivo rnai: The effects of peripheral groups and core structure on biological activity. Mol. Pharm. 2010, 7, 969–983, doi:10.1021/mp100101s.
[64]
Kebbekus, P.; Draper, D.E.; Hagerman, P. Persistence length of rna. Biochemistry 1995, 34, 4354–4357, doi:10.1021/bi00013a026.
[65]
Hagerman, P.J. Flexibility of DNA. Annu Rev. Biophys. Biophys. Chem. 1988, 17, 265–286, doi:10.1146/annurev.bb.17.060188.001405.
[66]
Hagerman, P.J. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers 1981, 20, 1503–1535, doi:10.1002/bip.1981.360200710.
[67]
Shah, S.A.; Brunger, A.T. The 1.8 a crystal structure of a statically disordered 17 base-pair rna duplex: Principles of rna crystal packing and its effect on nucleic acid structure. J. Mol. Biol. 1999, 285, 1577–1588, doi:10.1006/jmbi.1998.2385.
[68]
Taratula, O.; Garbuzenko, O.B.; Kirkpatrick, P.; Pandya, I.; Savla, R.; Pozharov, V.P.; He, H.; Minko, T. Surface-engineered targeted ppi dendrimer for efficient intracellular and intratumoral sirna delivery. J. Control. Release 2009, 140, 284–293, doi:10.1016/j.jconrel.2009.06.019.
[69]
Spagnou, S.; Miller, A.D.; Keller, M. Lipidic carriers of sirna: Differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry 2004, 43, 13348–13356, doi:10.1021/bi048950a.
[70]
Gary, D.J.; Puri, N.; Won, Y.Y. Polymer-based sirna delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 2007, 121, 64–73, doi:10.1016/j.jconrel.2007.05.021.
[71]
Felgner, J.H.; Kumar, R.; Sridhar, C.N.; Wheeler, C.J.; Tsai, Y.J.; Border, R.; Ramsey, P.; Martin, M.; Felgner, P.L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 1994, 269, 2550–2561.
[72]
De Wolf, H.K.; Snel, C.J.; Verbaan, F.J.; Schiffelers, R.M.; Hennink, W.E.; Storm, G. Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. Int. J. Pharm. 2007, 331, 167–175, doi:10.1016/j.ijpharm.2006.10.029.
[73]
Jere, D.; Jiang, H.L.; Arote, R.; Kim, Y.K.; Choi, Y.J.; Cho, M.H.; Akaike, T.; Cho, C.S. Degradable polyethylenimines as DNA and small interfering rna carriers. Expert Opin. Drug Deliver. 2009, 6, 827–834, doi:10.1517/17425240903029183.
[74]
Lee, M.; Kim, S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 2005, 22, 1–10, doi:10.1007/s11095-004-9003-5.
[75]
Wang, J.; Lu, Z.; Wientjes, M.G.; Au, J.L. Delivery of sirna therapeutics: Barriers and carriers. AAPS J. 2010, 12, 492–503, doi:10.1208/s12248-010-9210-4.
[76]
Lau, C.; Soriano, H.E.; Ledley, F.D.; Finegold, M.J.; Wolfe, J.H.; Birkenmeier, E.H.; Henning, S.J. Retroviral gene transfer into the intestinal epithelium. Hum. Gene Ther 1995, 6, 1145–1151, doi:10.1089/hum.1995.6.9-1145.
[77]
Howard, K.A. Delivery of rna interference therapeutics using polycation-based nanoparticles. Adv. Drug Deliver. Rev. 2009, 61, 710–720, doi:10.1016/j.addr.2009.04.001.
[78]
Singha, K.; Namgung, R.; Kim, W.J. Polymers in small-interfering rna delivery. Nucleic Acid Ther. 2011, 21, 133–147.
[79]
Ofek, P.; Fischer, W.; Calderon, M.; Haag, R.; Satchi-Fainaro, R. In vivo delivery of small interfering rna to tumors and their vasculature by novel dendritic nanocarriers. FASEB J. 2010, 24, 3122–3134, doi:10.1096/fj.09-149641.
[80]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications--reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129, doi:10.1016/j.addr.2005.09.018.
[81]
Grzelinski, M.; Urban-Klein, B.; Martens, T.; Lamszus, K.; Bakowsky, U.; Hobel, S.; Czubayko, F.; Aigner, A. Rna interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering rnas in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 2006, 17, 751–766, doi:10.1089/hum.2006.17.751.
[82]
Thomas, M.; Lu, J.J.; Ge, Q.; Zhang, C.; Chen, J.; Klibanov, A.M. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 2005, 102, 5679–5684, doi:10.1073/pnas.0502067102.
[83]
Hobel, S.; Koburger, I.; John, M.; Czubayko, F.; Hadwiger, P.; Vornlocher, H.P.; Aigner, A. Polyethylenimine/small interfering rna-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with bevacizumab. J. Gene Med. 2010, 12, 287–300.
[84]
Tan, P.H.; Yang, L.C.; Shih, H.C.; Lan, K.C.; Cheng, J.T. Gene knockdown with intrathecal sirna of nmda receptor nr2b subunit reduces formalin-induced nociception in the rat. Gene Ther. 2005, 12, 59–66, doi:10.1038/sj.gt.3302376.
[85]
Navarro, G.; Sawant, R.R.; Biswas, S.; Essex, S.; Tros de Ilarduya, C.; Torchilin, V.P. P-glycoprotein silencing with sirna delivered by dope-modified pei overcomes doxorubicin resistance in breast cancer cells. Nanomedicine 2012, 7, 65–78, doi:10.2217/nnm.11.93.
Buhleier, E.; Wehner, W.; Vogtle, F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart 1978, 155–158.
[89]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polymer J. 1985, 17, 117–132, doi:10.1295/polymj.17.117.
[90]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 1986, 19, 2466–2468, doi:10.1021/ma00163a029.
Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112, 7638–7647, doi:10.1021/ja00177a027.
[93]
Brauge, L.; Magro, G.; Caminade, A.M.; Majoral, J.P. First divergent strategy using two ab (2) unprotected monomers for the rapid synthesis of dendrimers. J. Am. Chem Soc. 2001, 123, 6698–6699, doi:10.1021/ja0029228.
[94]
Maraval, V.; Pyzowski, J.; Caminade, A.M.; Majoral, J.P. "Lego" chemistry for the straightforward synthesis of dendrimers. J. Org. Chem. 2003, 68, 6043–6046, doi:10.1021/jo0344438.
Hui, Z.; He, Z.G.; Zheng, L.; Li, G.Y.; Shen, S.R.; Li, X.L. Studies on polyamidoamine dendrimers as efficient gene delivery vector. J. Biomater. Appl. 2008, 22, 527–544.
[97]
Kim, T.I.; Seo, H.J.; Choi, J.S.; Jang, H.S.; Baek, J.U.; Kim, K.; Park, J.S. Pamam-peg-pamam: Novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules 2004, 5, 2487–2492, doi:10.1021/bm049563j.
Forrest, M.L.; Gabrielson, N.; Pack, D.W. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng. 2005, 89, 416–423, doi:10.1002/bit.20356.
[100]
Richardson, S.C.; Pattrick, N.G.; Man, Y.K.; Ferruti, P.; Duncan, R. Poly(amidoamine)s as potential nonviral vectors: Ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules 2001, 2, 1023–1028, doi:10.1021/bm010079f.
[101]
Jensen, L.B.; Pavan, G.M.; Kasimova, M.R.; Rutherford, S.; Danani, A.; Nielsen, H.M.; Foged, C. Elucidating the molecular mechanism of pamam-sirna dendriplex self-assembly: Effect of dendrimer charge density. Int. J. Pharm. 2011, 416, 410–418, doi:10.1016/j.ijpharm.2011.03.015.
[102]
Mintzer, M.A.; Merkel, O.M.; Kissel, T.; Simanek, E.E. Polycationic triazine-based dendrimers: Effect of peripheral groups on transfection efficiency. New J. Chem. 2009, 33, 1918–1925, doi:10.1039/b908735d.
[103]
Weber, N.; Ortega, P.; Clemente, M.I.; Shcharbin, D.; Bryszewska, M.; de la Mata, F.J.; Gomez, R.; Munoz-Fernandez, M.A. Characterization of carbosilane dendrimers as effective carriers of sirna to hiv-infected lymphocytes. J. Control. Release 2008, 132, 55–64, doi:10.1016/j.jconrel.2008.07.035.
[104]
Merkel, O.M.; Mintzer, M.A.; Sitterberg, J.; Bakowsky, U.; Simanek, E.E.; Kissel, T. Triazine dendrimers as nonviral gene delivery systems: Effects of molecular structure on biological activity. Bioconjug. Chem. 2009, 20, 1799–1806, doi:10.1021/bc900243r.
[105]
Posadas, I.; Lopez-Hernandez, B.; Clemente, M.I.; Jimenez, J.L.; Ortega, P.; de la Mata, J.; Gomez, R.; Munoz-Fernandez, M.A.; Cena, V. Highly efficient transfection of rat cortical neurons using carbosilane dendrimers unveils a neuroprotective role for hif-1alpha in early chemical hypoxia-mediated neurotoxicity. Pharm. Res. 2009, 26, 1181–1191, doi:10.1007/s11095-009-9839-9.
[106]
Gras, R.; Almonacid, L.; Ortega, P.; Serramia, M.J.; Gomez, R.; de la Mata, F.J.; Lopez-Fernandez, L.A.; Munoz-Fernandez, M.A. Changes in gene expression pattern of human primary macrophages induced by carbosilane dendrimer 2g-nn16. Pharm. Res. 2009, 26, 577–586, doi:10.1007/s11095-008-9776-z.
[107]
Ooya, T.; Lee, J.; Park, K. Hydrotropic dendrimers of generations 4 and 5: Synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjug. Chem. 2004, 15, 1221–1229, doi:10.1021/bc049814l.
[108]
Trubetskoy, V.S.; Loomis, A.; Slattum, P.M.; Hagstrom, J.E.; Budker, V.G.; Wolff, J.A. Caged DNA does not aggregate in high ionic strength solutions. Bioconjugate Chem. 1999, 10, 624–628, doi:10.1021/bc9801530.
[109]
Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Harada, A.; Yamasaki, Y.; Koyama, H.; Kataoka, K. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc. 2004, 126, 2355–2361.
[110]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by lhrh peptide. Proc. Natl. Acad. Sci. USA 2005, 102, 12962–12967.
[111]
Hayashi, Y.; Mori, Y.; Yamashita, S.; Motoyama, K.; Higashi, T.; Jono, H.; Ando, Y.; Arima, H. Potential use of lactosylated dendrimer (G3)/α-cyclodextrin conjugates as hepatocyte-specific sirna carriers for the treatment of familial amyloidotic polyneuropathy. Mol. Pharm. 2012, 9, 1645–1653, doi:10.1021/mp200654g.
[112]
Hayashi, Y.; Mori, Y.; Higashi, T.; Motoyama, K.; Jono, H.; Sah, D.W.; Ando, Y.; Arima, H. Systemic delivery of transthyretin sirna mediated by lactosylated dendrimer/α-cyclodextrin conjugates into hepatocyte for familial amyloidotic polyneuropathy therapy. Amyloid 2012, 19 (Suppl 1), 47–49.
[113]
Liu, X.X.; Rocchi, P.; Qu, F.Q.; Zheng, S.Q.; Liang, Z.C.; Gleave, M.; Iovanna, J.; Peng, L. Pamam dendrimers mediate sirna delivery to target hsp27 and produce potent antiproliferative effects on prostate cancer cells. Chem. Med. Chem. 2009, 4, 1302–1310.
[114]
Shen, X.C.; Zhou, J.; Liu, X.; Wu, J.; Qu, F.; Zhang, Z.L.; Pang, D.W.; Quelever, G.; Zhang, C.C.; Peng, L. Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Org. Biomol. Chem. 2007, 5, 3674–3681, doi:10.1039/b711242d.
[115]
Wu, J.; Zhou, J.; Qu, F.; Bao, P.; Zhang, Y.; Peng, L. Polycationic dendrimers interact with rna molecules: Polyamine dendrimers inhibit the catalytic activity of candida ribozymes. Chem. Commun. 2005, 41, 313–315.
Lee, M.; Kim, S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 2005, 22, 1–10, doi:10.1007/s11095-004-9003-5.
[118]
Bhadra, D.; Bhadra, S.; Jain, N.K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Sci. 2005, 8, 467–482.
[119]
Choi, Y.H.; Liu, F.; Kim, J.S.; Choi, Y.K.; Park, J.S.; Kim, S.W. Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J. Control. Release 1998, 54, 39–48, doi:10.1016/S0168-3659(97)00174-0.
[120]
Morato, R.G.; Bueno, M.G.; Malmheister, P.; Verreschi, I.T.; Barnabe, R.C. Changes in the fecal concentrations of cortisol and androgen metabolites in captive male jaguars (panthera onca) in response to stress. Braz. J. Med. Biol. Res. 2004, 37, 1903–1907.
[121]
Kursa, M.; Walker, G.F.; Roessler, V.; Ogris, M.; Roedl, W.; Kircheis, R.; Wagner, E. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug. Chem. 2003, 14, 222–231, doi:10.1021/bc0256087.
[122]
Torchilin, V.P.; Omelyanenko, V.G.; Papisov, M.I.; Bogdanov, A.A., Jr.; Trubetskoy, V.S.; Herron, J.N.; Gentry, C.A. Poly(ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity. Biochem. Biophys. Acta 1994, 1195, 11–20, doi:10.1016/0005-2736(94)90003-5.
[123]
Maeda, H.; Sawa, T.; Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the epr effect in solid tumor and clinical overview of the prototype polymeric drug smancs. J. Control. Release 2001, 74, 47–61, doi:10.1016/S0168-3659(01)00309-1.
[124]
Bikram, M.; Ahn, C.-H.; Chae, S.Y.; Lee, M.; Yockman, J.W.; Kim, S.W. Biodegradable poly (ethylene glycol)-co-poly(l-lysine)-g-histidine multiblock copolymers for nonviral gene delivery. Macromolecules 2004, 37, 1903–1916, doi:10.1021/ma035650c.
[125]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125i-labelled polyamidoamine dendrimers in vivo. J. Control. Release 2000, 65, 133–148, doi:10.1016/S0168-3659(99)00246-1.
[126]
Chen, H.T.; Neerman, M.F.; Parrish, A.R.; Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 2004, 126, 10044–10048, doi:10.1021/ja048548j.
Liu, M.; Kono, K.; Fréchet, J.M.J. Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers. J. Polymer Sci. Part A 1999, 37, 3492–3503, doi:10.1002/(SICI)1099-0518(19990901)37:17<3492::AID-POLA7>3.0.CO;2-0.
[129]
Tang, Y.; Li, Y.B.; Wang, B.; Lin, R.Y.; van Dongen, M.; Zurcher, D.M.; Gu, X.Y.; Banaszak Holl, M.M.; Liu, G.; Qi, R. Efficient in vitro sirna delivery and intramuscular gene silencing using peg-modified pamam dendrimers. Mol. Pharm. 2012, 9, 1812–1821, doi:10.1021/mp3001364.
Kang, H.; DeLong, R.; Fisher, M.H.; Juliano, R.L. Tat-conjugated pamam dendrimers as delivery agents for antisense and sirna oligonucleotides. Pharm. Res. 2005, 22, 2099–2106, doi:10.1007/s11095-005-8330-5.
[132]
Waite, C.L.; Sparks, S.M.; Uhrich, K.E.; Roth, C.M. Acetylation of pamam dendrimers for cellular delivery of sirna. BMC Biotechnol. 2009, 9, 38.
[133]
Minko, T.; Patil, M.L.; Zhang, M.; Khandare, J.J.; Saad, M.; Chandna, P.; Taratula, O. Lhrh-targeted nanoparticles for cancer therapeutics. Methods Mol. Biol. 2010, 624, 281–294, doi:10.1007/978-1-60761-609-2_19.
[134]
Patil, M.L.; Zhang, M.; Betigeri, S.; Taratula, O.; He, H.; Minko, T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient sirna delivery. Bioconjugate Chem. 2008, 19, 1396–1403, doi:10.1021/bc8000722.
[135]
Patil, M.L.; Zhang, M.; Minko, T. Multifunctional triblock nanocarrier (pamam-peg-pll) for the efficient intracellular sirna delivery and gene silencing. ACS Nano 2011, 5, 1877–1887, doi:10.1021/nn102711d.
[136]
Patil, M.L.; Zhang, M.; Taratula, O.; Garbuzenko, O.B.; He, H.; Minko, T. Internally cationic polyamidoamine pamam-oh dendrimers for sirna delivery: Effect of the degree of quaternization and cancer targeting. Biomacromolecules 2009, 10, 258–266, doi:10.1021/bm8009973.
[137]
Kim, S.T.; Chompoosor, A.; Yeh, Y.-C.; Agasti, S.S.; Solfiell, D.J.; Rotello, V.M. Dendronized gold nanoparticles for sirna delivery. Small 2012, 8, 3253–3256, doi:10.1002/smll.201201141.
[138]
Taratula, O.; Garbuzenko, O.; Savla, R.; Wang, Y.A.; He, H.; Minko, T. Multifunctional nanomedicine platform for cancer specific delivery of sirna by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr. Drug Deliver. 2011, 8, 59–69, doi:10.2174/156720111793663642.