|
Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interactionAbstract: We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes.We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.Development is a variable and time-dependent process that can be thought of as mapping genotypes on to adult phenotypes [1,2]. The time elapsed from the embryo to the reproductive phase, commonly known as developmental time (DT), is a trait of great relevance to fitness in all organisms [3]. In particular, Drosophila species occupy ephemeral habitats, such as rotting fruits that may result in selection for rapid development. Quoting Gou
|