全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer

DOI: 10.1186/1471-213x-11-40

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study we identified three transcriptional enhancers at the ERBB3 locus and evaluated their regulatory potential in vitro in NC-derived cell types and in vivo in transgenic zebrafish. One enhancer, termed ERBB3_MCS6, which lies within the first intron of ERBB3, directs the highest reporter expression in vitro and also demonstrates epigenetic marks consistent with enhancer activity. We identify a consensus SOX10 binding site within ERBB3_MCS6 and demonstrate, in vitro, its necessity and sufficiency for the activity of this enhancer. Additionally, we demonstrate that transcription from the endogenous Erbb3 locus is dependent on Sox10. Further we demonstrate in vitro that Sox10 physically interacts with that ERBB3_MCS6. Consistent with its in vitro activity, we also show that ERBB3_MCS6 drives reporter expression in NC cells and a subset of its derivative lineages in vivo in zebrafish in a manner consistent with erbb3b expression. We also demonstrate, using morpholino analysis, that Sox10 is necessary for ERBB3_MCS6 expression in vivo in zebrafish.Taken collectively, our data suggest that ERBB3 may be directly regulated by SOX10, and that this control may in part be facilitated by ERBB3_MCS6.The neural crest (NC) is a transient, multipotent and migratory population of cells present in early vertebrate development. NC cells arise from the lateral folds of the neural plate at neurulation and give rise to a multitude of cell types including pigment cells, neurons and glia of the peripheral nervous system, craniofacial skeleton and cartilage, and adrenal medullary cells [1]. Defects in NC development underlie several human diseases such as Waardenburg syndrome, Hirschsrpung disease and DiGeorge syndrome, which present a spectrum of phenotypes including craniofacial defects, ocular, pigmentary and otic defects, enteric hypoganglionosis, and cardiac malformations [2,3]. Despite significant recent progress in the identification of key signaling pathways and transcripti

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133