全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cyclic mechanical strain causes cAMP-response element binding protein activation by different pathways in cardiac fibroblasts

DOI: 10.4081/hi.2010.e3

Keywords: Heart , Cardiac fibroblasts , Mechanical strain , Signal transduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

The transcription factor cAMP-response element binding protein (CREB) mediates the mechanical strain-induced gene expression in the heart. This study investigated which signaling pathways are involved in the strain-induced CREB activation using cultured ventricular fibroblasts from adult rat hearts. CREB phosphorylation was analyzed by immunocytochemistry and ELISA. Cyclic mechanical strain (1 Hz and 5% elongation) for 15 min induced CREB phosphorylation in all CREB-positive fibroblasts. Several signaling transduction pathways can contribute to strain-induced CREB activation. The inhibition of PKA, PKC, MEK, p38-MAPK or PI3-kinase partially reduced the strain-induced CREB phosphorylation. Activation of PKA by forskolin or PKC by PMA resulted in a level of CREB phosphorylation comparable to the reduced level of the strain-induced CREB phosphorylation in the presence of PKA or PKC inhibitors. Signaling pathways involving PKC, MEK, p38-MAPK or PI3-kinase seem to converge during strain-induced CREB activation. PKA interacted additively with the investigated signaling pathways. The strain-induced c-Fos expression can be reduced by PKC inhibition but not by PKA inhibition. Our results suggest that the complete strain-induced CREB phosphorylation involves several signaling pathways that have a synergistic effect. The influence on gene expression is dependent on the level and the time of CREB stimulation. These wide-ranging possibilities of CREB activation provide a graduated control system.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133