|
Anti-ischemic therapy and stress testing: pathophysiologic, diagnostic and prognostic implicationsAbstract: Anti-ischemic therapy, in particular beta-blockers, is the most commonly employed drug for the control of myocardial ischemia in patients with stable coronary artery disease. Its widespread use also in patients with suspected coronary artery disease has important practical, clinical diagnostic and prognostic implications because diagnostic tests are heavily influenced by its effects. The diagnostic and prognostic impact of anti-ischemic therapy on stress testing is largely ignored but not negligible. The issue raises several questions: How to evaluate patients at time of testing for myocardial ischemia? How to interpret a stress test performed on anti-ischemic therapy? Are the stressors employed for the detection of myocardial ischemia created equal in relation to the different classes of drugs used in clinical practice? Is stress testing able to assess the efficacy of medical therapy in patients with known coronary artery disease? Has the protection of anti-ischemic therapy on inducible myocardial ischemia any impact on long-term survival?The answer to all these issues relies on the mechanism through which myocardial ischemia is induced by the different stressors (exercise or pharmacologic such as dipyridamole and dobutamine) employed during stress testing. Test exploring organic coronary artery stenosis can induce ischemia by two basic mechanisms: 1. an increase in oxygen demand, exceeding the fixed supply and 2. flow maldistribution due to inappropriate coronary arteriolar triggered by a metabolic/pharmacologic stimulus [1]. The mechanism of increased demand can be easily fitted into the familiar concept framework of ischemia as a supply-demand mismatch, deriving from an increase in oxygen requirements in the presence of a fixed reduction in coronary flow reserve. The different stresses can determine increases in demand through different mechanisms (Fig. 1). In resting conditions, myocardial oxygen consumption is dependent mainly upon heart rate, inotropic state,
|