全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Lubricants  2013 

Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

DOI: 10.3390/lubricants1020022

Keywords: amorphous carbon films, nanocomposites, nanoindentation, friction, nanotribology, lubricity, wear, molecular dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS), require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CN x, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

References

[1]  Charitidis, C.A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int. J. Refract. Metals Hard Mater. 2010, 28, 51, doi:10.1016/j.ijrmhm.2009.08.003.
[2]  Yoon, E.S.; Singh, R.A.; Oh, H.J.; Kong, H. The effect of contact area on nano/micro-scale friction. Wear 2005, 259, 1424, doi:10.1016/j.wear.2005.01.033.
[3]  Lafaye, S.; Gauthier, C.; Schirrer, R. Ploughing friction of a conical tip with blunted spherical extremity: Analytic model with elastic recovery. Tribol. Lett. 2006, 21, 95, doi:10.1007/s11249-006-9018-7.
[4]  Goddard, J.; Wilman, H. A theory of friction and wear during the abrasion of metals. Wear 1962, 5, 114, doi:10.1016/0043-1648(62)90235-1.
[5]  Müser, M.H. Structural lubricity: Role of dimension and symmetry. Europhys. Lett. 2004, 66, 97, doi:10.1209/epl/i2003-10139-6.
[6]  Kim, H.J.; Kim, D.E. Nano-scale Friction: A Review. Int. J. Precis. Eng. Manuf. 2009, 10, 141.
[7]  Carpick, R.W.; Salmeron, M. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 1997, 97, 1163, doi:10.1021/cr960068q.
[8]  Urbakh, M.; Klafter, J.; Gourdon, D.; Israelachvili, J. The nonlinear nature of friction. Nature 2004, 430, 525, doi:10.1038/nature02750.
[9]  Bhushan, B.; Israelachvili, J.N.; Landman, U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 1995, 374, 607, doi:10.1038/374607a0.
[10]  H?lscher, H.; Schirmeisen, A.; Schwarz, U.D. Principles of atomic friction: from sticking atoms to superlubric sliding. Phil. Trans. R. Soc. A 2008, 336, 1383.
[11]  Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R: Rep. 2008, 3, 129.
[12]  Ferrari, A.C. Tribologyof Diamond-Like Carbon Films; Chapter 2; Donnet, C., Erdemir, A., Eds.; Springer: New York, NY, USA, 2008; p. 25.
[13]  Jacob, W.; Moller, W. On the structure of thin hydrocarbon films. Appl. Phys. 1993, 63, 1771.
[14]  Grill, A. Diamond-like carbon: State of the art. Diam. Relat. Mater. 1999, 8, 428, doi:10.1016/S0925-9635(98)00262-3.
[15]  Ronkainen, H.; Varjus, S.; Koskinen, J.; Holmberg, K. Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings. Wear 2001, 249, 260, doi:10.1016/S0043-1648(01)00558-0.
[16]  Liu, Y.; Erdemir, A.; Meletis, E.I. A study of the wear mechanism of ond-like carbon, films. Surf. Coat. Technol. 1996, 82, 48, doi:10.1016/0257-8972(95)02623-1.
[17]  Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications; Imperial College Press: London, UK, 2004; pp. 391–392.
[18]  Kim, S.H.; Asay, D.B.; Dugger, M.T. Nanotribology and MEMS. Nanotoday 2007, 2, 22.
[19]  Bhushan, B. Micro/nanotribology and its applications to magnetic storage devices and MEMS. Tribol. Int. 1995, 28, 85, doi:10.1016/0301-679X(95)92698-5.
[20]  Kim, D.; Cao, D.; Bryant, M.D.; Meng, W.J.; Ling, F.F. Tribological study of microbearings for MEMS applications. Tribology 2005, 127, 537, doi:10.1115/1.1924428.
[21]  Achanta, S.; Drees, D.; Celis, J.-P. Friction and nanowear of hard coatings in reciprocating sliding at milli-Newtons loads. Wear 2005, 259, 719, doi:10.1016/j.wear.2005.02.078.
[22]  Schonherr, H.; Vancsob, G.J. Molecular resolution imaging and friction anisotropy of highly oriented polyethylene and poly(tetrafluoroethylene) by scanning force microscopy with chemically modified probes. Macromolecules 1997, 30, 6391, doi:10.1021/ma970441b.
[23]  Wei, B.; Komvopoulos, K. Nanoscale indentation hardness and wear characterization of hydrogenated carbon thin films. ASME J. Tribol. 1996, 118, 431, doi:10.1115/1.2831320.
[24]  Bhushan, B.; Dandavate, C. Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys. 2000, 87, 1201, doi:10.1063/1.371998.
[25]  Deng, H.; Scharf, T.W.; Barnard, J.A. Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques. J. Appl. Phys. 1997, 81, 5396, doi:10.1063/1.364551.
[26]  Charitidis, C.; Logothetidis, S.; Gioti, M. A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 2000, 125, 201, doi:10.1016/S0257-8972(99)00546-0.
[27]  Gao, G.T.; Mikulski, P.T.; Harrison, J.A. Molecular-scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 2002, 124, 7202–7209, doi:10.1021/ja0178618.
[28]  Wong, C.H. Friction at Nanoscale. J. Appl. Mech. Eng. 2012, 1, 1–2.
[29]  Gardos, M.N.; Gabelich, S.A. Atmospheric effects of friction, friction noise and wear with silicon and diamond. Part III. SEM tribometry of polycrystalline diamond in vacuum and hydrogen. Tribol. Lett. 1999, 6, 103–112, doi:10.1023/A:1019147304112.
[30]  Grierson, D.S.; Carpick, R.W. Nanotribology of carbon-based materials. Nanotoday 2007, 2, 12–21, doi:10.1016/S1748-0132(07)70139-1.
[31]  Fontaine, J.; Le Mogne, T.; Loubet, J.L.; Belin, M. Achieving superlow friction with hydrogenated amorphous carbon: Some key requirements. Thin Solid Films 2005, 482, 99–108, doi:10.1016/j.tsf.2004.11.126.
[32]  Riedo, E.; Chevrier, J.; Comin, F.; Brune, H. Nanotribology of carbon-based thin films: The influence of film structure and surface morphology. Surf. Sci. 2001, 477, 25, doi:10.1016/S0039-6028(01)00701-4.
[33]  Kim, H.G.; Ahn, S.H.; Kim, J.G.; Park, S.J.; Lee, K.R. Effect of Si-incorporation on wear—Corrosion properties of diamond-like carbon films. Thin Solid Films 2005, 482, 299–304, doi:10.1016/j.tsf.2004.11.164.
[34]  Jiang, Z.; Lu, C.J.; Bogy, D.B.; Bhatia, C.S.; Miyamoto, T. Nanotribological characterization of hydrogenated carbon films by scanning probe microscopy. Thin Solid Films 1995, 258, 75–81, doi:10.1016/0040-6090(94)06376-1.
[35]  Xuan, S.Z.; Bui, L.; Zeng, X.T.; Li, X. Towards high adherent and tough a-C coatings. Thin Solid Films 2005, 482, 138, doi:10.1016/j.tsf.2004.11.165.
[36]  Prioli, R.; Jacobsohn, L.G.; Maia da Costa, M.E.H.; Freire, F.L. Nanotribological properties of amorphous carbon-fluorine films. Tribol. Lett. 2003, 15, 177–180, doi:10.1023/A:1024848816646.
[37]  Logothetidis, S.; Charitidis, C.; Patsalas, P. Engineering properties of fully sp3- to sp2-bonded carbon films and their modifications after post-growth ion irradiation. Diam. Relat. Mater. 2002, 11, 1095–1099, doi:10.1016/S0925-9635(01)00575-1.
[38]  Lu, W.; Komvopoulos, K.; Patsalas, P.; Charitidis, C.; Gioti, M.; Logothetidis, S. Microstructure and nanomechanical and optical properties of single- and multi-layer carbon films synthesized by radio frequency sputtering. Surf. Coat. Technol. 2003, 168, 12–22, doi:10.1016/S0257-8972(02)00841-1.
[39]  Bruno, P.; Cicala, G.; Losacco, A.M.; Decuzzi, P. Mechanical properties of PECVD hydrogenated amorphous carbon coatings via nanoindentation and nanoscratching techniques. Surf. Coat. Technol. 2004, 180–181, 259–264, doi:10.1016/j.surfcoat.2003.10.035.
[40]  Jahanmir, S.; Deckman, D.E.; Ives, L.K.; Feldman, A.; Farrabaugh, E. Tribological characteristics of synthesized diamond films on silicon carbide. Wear 1989, 133, 73–81, doi:10.1016/0043-1648(89)90114-2.
[41]  Ferrari, A.C.; Robertson, J.; Beghi, M.G.; Bottani, C.E.; Ferulano, R.; Pastorelli, R. Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering. Appl. Phys. Lett. 1999, 75, 1893–1895, doi:10.1063/1.124863.
[42]  Bonelli, M.; Ferrari, A.C.; Fioravanti, A.; Li Bassi, A.; Miotello, A.; Ossi, P.M. Structure and mechanical properties of low stress tetrahedral amorphous carbon films prepared by pulsed laser deposition. Eur. Phys. J. B—Condens. Matter Complex Syst. 2002, 25, 269–280.
[43]  Ouyang, J.H.; Sasaki, S.; Murakami, T. Properties of titanium containing diamond like carbon coatings. Wear 2009, 266, 96–102, doi:10.1016/j.wear.2008.05.002.
[44]  Malaczynski, G.W.; Elmoursi, A.A.; Leung, C.H.; Hamdi, A.H.; Campbell, A.B. Improved adhesion of diamondlike coatings using shallow carbon implantation. J. Mater. Res. 2000, 15, 590–592, doi:10.1557/JMR.2000.0088.
[45]  Lemoine, P.; Zhao, J.F.; Quinn, J.P.; McLaughlin, J.A.; Maguire, P. Hardness measurements at shallow depths on ultra-thin amorphous carbon films deposited onto silicon and Al2O3-TiC substrates. Thin Solid Films 2000, 379, 166–172, doi:10.1016/S0040-6090(00)01543-1.
[46]  Quinn, J.P.; Lemoine, P.; Maguire, P.; Mc Laughlin, J.A. Ultra-thin tetrahedral amorphous carbon films with strong adhesion, as measured by nanoscratch testing. Diam. Relat. Mater. 2004, 13, 1385–1390, doi:10.1016/j.diamond.2003.11.025.
[47]  Teo, E.H.T.; Chua, D.H.C.; Tay, B.K. Mechanical properties of alternating high-low sp3 content thick non-hydrogenated diamond-like amorphous carbon films. Diam. Relat. Mater. 2007, 16, 1882–1886, doi:10.1016/j.diamond.2007.08.035.
[48]  Xu, M.; Cai, X.; Zhao, J.; Chen, Q.; Chu, P.K. Comparative studies on influence of acetylene to argon flow rate ratios on nano-scratch behavior of a-C:H films produced on steel substrates by plasma immersion ion implantation and deposition. Thin Solid Films 2007, 516, 252–256, doi:10.1016/j.tsf.2007.05.052.
[49]  Huang, L.Y.; Xu, K.W.; Lu, J.; Guelorget, B. Nano-scratching process and fracture mechanism of amorphous carbon films. Wear 2003, 254, 1032–1036, doi:10.1016/S0043-1648(03)00309-0.
[50]  Druza, B.; Yevtukhov, Y.; Novotny, V.; Zaritsky, I.; Kanarov, V.; Polyakov, V.; Rukavishnikov, A. Nitrogenated carbon films deposited using filtered cathodic arc. Diam. Relat. Mater. 2000, 9, 668–674, doi:10.1016/S0925-9635(00)00206-5.
[51]  Ma, X.-G.; Komvopoulos, K.; Wan, D.; Bogy, D.B.; Kim, Y.-S. Effects of film thickness and contact load on nanotribological properties of sputtered amorphous carbon thin films. Wear 2003, 254, 1010–1018, doi:10.1016/S0043-1648(03)00307-7.
[52]  Zhang, T.H.; Huan, Y. Nanoindentation and nanoscratch behaviors of DLC coatings on different steel substrates. Compos. Sci. Technol. 2005, 65, 1409–1413, doi:10.1016/j.compscitech.2004.12.011.
[53]  Bandorf, R.; Paulkowski, D.M.; Schiffmann, K.I.; Küster, R.L.A. Tribological improvement of moving microparts by application of thin films and micropatterning. J. Phys.: Condens. Matter 2008, 20, doi:10.1088/0953-8984/20/35/354018.
[54]  Bandorf, R.; Luthje, H.; Schiffmann, K.; Staedler, T.; Wortmann, A. Sub-micron coatings with low friction and wear for micro actuators. Microsyst. Technol. 2002, 8, 51–54, doi:10.1007/s00542-001-0155-5.
[55]  Staedler, T.; Schiffmann, K. Correlation of nanomechanical and nanotribological behavior of thin DLC coatings on different substrates. Surf. Sci. 2001, 482, 1125–1129, doi:10.1016/S0039-6028(01)00726-9.
[56]  Maia da Costa, M.E.H.; Sanchez, C.M.T.; Jacobsohn, L.G.; Freire, F.L., Jr. Structural, mechanical, and nanoscaletribological properties of nitrogen-incorporated fluorine-carbon films. Thin Solid Films 2005, 482, 109–114, doi:10.1016/j.tsf.2004.11.161.
[57]  Corbella, C.; Polo, M.C.; Oncins, G.; Pascual, E.; Andújar, J.L.; Bertran, E. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films. Thin Solid Films 2005, 482, 172–176, doi:10.1016/j.tsf.2004.11.135.
[58]  Wilson, G.M.; Sullivan, J.L. An investigation into the effect of film thickness on nanowear with amorphous carbon-based coatings. Wear 2009, 266, 1039–1043, doi:10.1016/j.wear.2008.12.001.
[59]  Bolelli, G.; Lusvarghi, L.; Mantini, F.P.; Pitacco, F.; Volz, H. Enhanced tribological properties of PECVD DLC coated thermally sprayed coatings. Surf. Coat. Technol. 2008, 202, 4382–4386, doi:10.1016/j.surfcoat.2008.04.013.
[60]  Crombez, R.; Mc Minis, J.; Veerasamy, V.S.; Shen, W. Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass. Tribol. Int. 2011, 44, 55–62, doi:10.1016/j.triboint.2010.08.004.
[61]  Tsotsos, C.; Polychronopoulou, K.; Demas, N.G.; Constantinides, G.; Gravani, S.; B?bel, K.; Baker, M.A.; Polycarpou, A.A.; Rebholz, C. Mechanical and high pressure tribological properties of nanocrystalline Ti(N,C) and amorphous C:H nanocomposite coatings. Diam. Relat. Mater. 2010, 19, 960–963, doi:10.1016/j.diamond.2010.02.036.
[62]  Zheng, X.H.; Tu, J.P.; Song, R.G. Microstructure and tribological performance of CNx-TiNx composite films prepared by pulsed laser deposition. Mater. Design 2010, 31, 1716–1719, doi:10.1016/j.matdes.2009.01.043.
[63]  Buijnsters, J.G.; Camero, M.; Vázquez, L.; Agulló-Rueda, F.; Gago, R.; Jiménez, I.; Gómez-Aleixandre, C.; Albella, J.M. Tribological study of hydrogenated amorphous carbon films with tailored microstructure and composition produced by bias-enhanced plasma chemical vapour deposition. Diam. Relat. Mater. 2010, 19, 1093–1102, doi:10.1016/j.diamond.2010.03.017.
[64]  Zheng, X.H.; Tu, J.P.; Song, R.G. Fabrication, microstructure and tribological behavior of pulsed laser deposited a-CNx/TiN multilayer films. Surf. Coat. Technol. 2010, 205, 902–908, doi:10.1016/j.surfcoat.2010.08.045.
[65]  Liu, D.G.; Tu, J.P.; Hong, C.F.; Gu, C.D.; Mai, Y.J.; Chen, R. Improving mechanical properties of a-CNx films by Ti-TiN/CNx gradient multilayer. App. Surf. Sci. 2010, 257, 487–494, doi:10.1016/j.apsusc.2010.07.018.
[66]  Borrero-Lopez, O.J.; Hoffman, M.J.; Bendavid, A.; Martin, P.J. Substrate effects on the mechanical properties and contact damage of diamond-like carbon thin films. Diam. Relat. Mater. 2010, 19, 1273–1280, doi:10.1016/j.diamond.2010.06.004.
[67]  Gao, G.; Cannara, R.J.; Carpick, R.W.; Harrison, J.A. Atomic-scale friction on diamond: A comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 2007, 23, 5394–5405, doi:10.1021/la062254p.
[68]  Charitidis, C.; Logothetidis, S. Effects of normal load on nanotribological properties of sputtered carbon nitride films. Diam. Relat. Mater. 2005, 14, 98, doi:10.1016/j.diamond.2004.07.022.
[69]  Enomoto, Y.; Tabor, D. The frictional anisotropy of diamond. Proc. R. Soc. Lond. A 1981, 373, 405, doi:10.1098/rspa.1981.0001.
[70]  Germann, G.J.; Cohen, S.R.; Neubauer, G.; McClelland, G.M.; Seki, H. Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. Appl. Phys. 1993, 73, 163, doi:10.1063/1.353878.
[71]  Gogotsi, Y.G.; Kailer, A.; Nickel, K.G. Pressure-induced phase transformations in diamond. J. Appl. Phys. 1998, 84, 1299–1304, doi:10.1063/1.368198.
[72]  Lee, E.H.; Hembree, D.M., Jr.; Rao, G.R.; Mansur, L.K. Raman scattering from ion-implanted diamond, graphite, and polymers. Phys. Rev. B 1993, 48, 15540–15551.
[73]  Erdemir, A.; Halter, M.; Fenske, G.R.; Zuiker, C.; Csencsits, R.; Krauss, A.R.; Gruen, D.M. Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol. Trans. 1997, 40, 667–673, doi:10.1080/10402009708983707.
[74]  Carpinteri, A.; Paggi, M. Size-scale effects on the friction coefficient. Int. J. Solids Struct. 2005, 42, 2901–2910, doi:10.1016/j.ijsolstr.2004.10.001.
[75]  Tomala, A.; Roy, M.; Franek, F. Nanotribology of Mo–Se–C films. Philos. Mag. 2010, 90, 3827–3843, doi:10.1080/14786435.2010.495041.
[76]  Hayward, I.P.; Singer, I.L.; Seitzman, L.E. The effect of roughness on the friction of diamond on CVD diamond coatings. Wear 1991, 157, 215, doi:10.1016/0043-1648(92)90063-E.
[77]  Bull, S.J.; Chalkar, P.R.; Johnston, C.; Moore, V. The effect of roughness on the friction and wear of diamond thin film. Surf. Coat. Technol. 1994, 68, 603–610, doi:10.1016/0257-8972(94)90224-0.
[78]  Schneider, A.; Steinmueller-Nethl, D.; Roy, M.; Franek, F. Enhanced tribological performances of nanocrystalline diamond film. Int. J. Refract. Metals Hard Mater. 2010, 28, 40–50, doi:10.1016/j.ijrmhm.2009.07.010.
[79]  Enachescu, M.; Van Den Oetelaar, R.J.A.; Carpick, R.W.; Ogletree, D.F.; Flipse, C.F.J.; Salmeron, M. Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface. Phys. Rev. Lett. 1998, 81, 1877–1880, doi:10.1103/PhysRevLett.81.1877.
[80]  Medyanik, S.N.; Liu, W.K.; Sung, I.H.; Carpick, R.W. Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 2006, 97, 1361061-4.
[81]  Socoliuc, A.; Bennewitz, R.; Gnecco, E.; Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys. Rev. Lett. 2004, 92, doi:10.1103/PhysRevLett.97.136106.
[82]  Krylov, S.Y.; Dijksman, J.A.; Van Loo, W.A.; Frenken, J.W.M. Stick-slip motion in spite of a slippery contact: Do we get what we see in atomic friction? Phys. Rev. Lett. 2006, 97, doi:10.1103/PhysRevLett.97.166103.
[83]  Erdemir, A.; Eryilmaz, O.L.; Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A: Vac. Surf. Films 2000, 18, 1987–1992, doi:10.1116/1.582459.
[84]  Donnet, C.; Belin, M.; Auge, J.C.; Martin, J.M.; Grill, A.; Patel, V. Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Technol. 1994, 68, 626–631, doi:10.1016/0257-8972(94)90228-3.
[85]  Erdemir, A. The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 2001, 146, 292–297, doi:10.1016/S0257-8972(01)01417-7.
[86]  Donnet, C.; Mogne, T.L.; Ponsonnet, L.; Belin, M.; Grill, A.; Patel, V.; Jahnes, C. The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings. Tribol. Lett. 1998, 4, 259–265, doi:10.1023/A:1019140213257.
[87]  Erdemir, A. Superlubricity and wearless sliding in diamond-like carbon films. Mater. Res. Soc. Symp. Proc. 2002, 697, 391–403.
[88]  Erdemir, A.; Eryilmaz, O.L.; Nilufer, I.B.; Fenske, G.R. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas. Surf. Coat. Technol. 2000, 133, 448–454, doi:10.1016/S0257-8972(00)00968-3.
[89]  Erdemir, A.; Nilufer, I.B.; Eryilmaz, O.L.; Beschliesser, M.; Fenske, G.R. Friction and wear performance of diamond-like carbon films grown in various source gas plasmas. Surf. Coat. Technol. 1999, 120, 589–593, doi:10.1016/S0257-8972(99)00444-2.
[90]  Erdemir, A.; Eryilmaz, O.L.; Nilufer, I.B.; Fenske, G.R. Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diam. Relat. Mater. 2000, 9, 632–637, doi:10.1016/S0925-9635(99)00361-1.
[91]  Donnet, C.; Grill, A. Friction control of diamond-like carbon coatings. Surf. Coat. Technol. 1997, 94, 456–462, doi:10.1016/S0257-8972(97)00275-2.
[92]  Donnet, C.; Fontaine, J.; Grill, A.; Le Mogne, T. The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol. Lett. 2001, 9, 137–142, doi:10.1023/A:1018800719806.
[93]  Fontaine, J.; Belin, M.; Le Mogne, T.; Grill, A. How to restore superlow friction of DLC: The healing effect of hydrogen gas. Tribol. Int. 2004, 37, 869–877, doi:10.1016/j.triboint.2004.07.002.
[94]  Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 2006, 39, R311, doi:10.1088/0022-3727/39/18/R01.
[95]  Uchidate, M.; Liu, H.; Iwabuchi, A.; Yamamoto, K. Effects of water environment on tribological properties of DLC rubbed against brass. Wear 2009, 267, 1589–1594, doi:10.1016/j.wear.2009.06.016.
[96]  Sundararajan, S.; Bhushan, B. Micro/Nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 1999, 225, 678–689, doi:10.1016/S0043-1648(99)00024-1.
[97]  Lu, W.; Komvopoulos, K. Nanomechanical and nanotribological properties of carbon, chromium, and titanium carbide ultrathin films. J. Tribol. 2001, 123, 717–724, doi:10.1115/1.1330737.
[98]  Beake, B.D.; Lau, S.P. Nanotribological and nanomechanical properties of 5–80 nm tetrahedral amorphous carbon films on silicon. Diam. Relat. Mater. 2005, 14, 1535–1542, doi:10.1016/j.diamond.2005.04.002.
[99]  Jiang, Z.; Lu, C.J.; Bogy, D.B.; Bhatia, C.S.; Miyamoto, T. Nanotribological evaluations of hydrogenated carbon films as thin as 5 nm on magnetic rigid disks. IEEE Trans. Magn. 1995, 31, 3015–3017, doi:10.1109/20.490255.
[100]  Singh, R.K.; Xie, Z.H.; Bendavid, A.; Martin, P.J.; Munroe, P.; Hoffman, M. Effect of substrate roughness on the contact damage of DLC coatings. Diam. Relat. Mater. 2008, 17, 975–979, doi:10.1016/j.diamond.2008.02.037.
[101]  Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985; p. 155.
[102]  Charitidis, C.; Logothetidis, S.; Douka, P. Nanoindentation and nanoscratching studies of amorphous carbon films. Diam. Relat. Mater. 1999, 8, 558–562, doi:10.1016/S0925-9635(98)00285-4.
[103]  Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite film approach to optimisedtribological behavior. Wear 2000, 246, 1, doi:10.1016/S0043-1648(00)00488-9.
[104]  Leyland, A.; Matthews, A. Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surf. Coat. Technol. 2004, 177, 317–324, doi:10.1016/j.surfcoat.2003.09.011.
[105]  Sham, T.-L.; Tichy, J. A scheme for hybrid molecular dynamics/finite element analysis of thin film lubrication. Wear 1997, 207, 100–106, doi:10.1016/S0043-1648(96)07471-6.
[106]  Mo, Y.; Turner, K.T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116–1119, doi:10.1038/nature07748.
[107]  Johnson, K.L. Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. Ser. A 1997, 453, 163–179, doi:10.1098/rspa.1997.0010.
[108]  Luan, B.; Robbins, M.O. Contact of single asperities with varying adhesion: Comparing continuum mechanics to atomistic simulations. Phys. Rev. E 2006, 74, doi:10.1103/PhysRevE.74.02611.
[109]  Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783, doi:10.1088/0953-8984/14/4/312.
[110]  Mylvaganam, K.; Zhang, L.C. Nano-Friction of some carbon allotropes. J. Comput. Theor. Nanosci. 2010, 7, 2199–2202, doi:10.1166/jctn.2010.1603.
[111]  Mishra, M.; Egberts, P.; Bennewitz, R.; Szlufarska, I. Friction model for single-asperity elastic-plastic contacts. Phys. Rev. B 2012, 86, doi:10.1103/PhysRevB.86.045452.
[112]  Bhushan, B. Nanotribology, nanomechanics and nanomaterials characterization. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2008, 366, 1351–1381, doi:10.1098/rsta.2007.2163.
[113]  Zhang, S.; Wagner, G.; Medyanik, S.N.; Liu, W.K.; Yu, Y.H.; Chung, Y.W. Experimental and molecular dynamics simulation studies of friction behavior of hydrogenated carbon films. Surf. Coat. Technol. 2004, 177, 818–823, doi:10.1016/j.surfcoat.2003.06.022.
[114]  Pastewka, L.; Moser, S.; Moseler, M. Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 2010, 39, 49–61, doi:10.1007/s11249-009-9566-8.
[115]  agin, T.; Che, J.; Gardos, M.N.; Fijany, A.; Goddard, W.A., III. Simulation and experiments on friction and wear of diamond: A material for MEMS and NEMS application. Nanotechnology 1999, 10, 278, doi:10.1088/0957-4484/10/3/310.
[116]  Bucholz, E.W.; Phillpot, S.R.; Sinnott, S.B. Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 2012, 54, 91–96, doi:10.1016/j.commatsci.2011.09.036.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133