全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

DOI: 10.1186/1478-811x-10-33

Keywords: Lipopolysaccharide, Vascular cell adhesion molecule-1, Toll-like receptors, Reactive oxygen species, NADPH oxidase

Full-Text   Cite this paper   Add to My Lib

Abstract:

We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88), Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2), and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], c-Src (PP1), p38 MAPK (SB202190), and p300 (GR343). LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody.In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may reduce monocyte adhesion via VCAM-1 suppression and attenuation of the inflammatory responses in renal diseases.Mesangial cells (MCs) response to various pathological stimuli associated with the main events of glomerular inflammation, including leukocyte infiltration, cell proliferation, and fibrosis, which were predominantly mediated through induction of adhesion molecules [1,2]. In bacteria-induced glomerulonephritis, lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negati

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133