|
Cell & Bioscience 2012
C. elegans PAT-9 is a nuclear zinc finger protein critical for the assembly of muscle attachmentsKeywords: Sarcomere, Muscle, Zinc finger, Pat Abstract: Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19) as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP) experiments showed that PAT-9 is present on certain gene promoters.We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s) of the muscle attachment sites.The nematode C. elegans provides an established, developmentally well-documented, and evolutionarily conserved system to study muscle structure, development, and function [1,2]. The C. elegans sarcomere, the basic muscle contraction unit, has been studied for decades revealing a highly organized structure consisting of several hundred proteins, yet new components are still being identified [2-6]. In C. elegans sarcomeres, myosin thick filaments are organized around M-lines and actin thin filaments are anchored to the dense bodies, structures analogous to the vertebrate Z-disk. The dense bodies and M-lines are sites of attachment for body wall muscle cells to the basement membrane, thus transmitting the force of
|