|
Intimal Hyperplasia in Balloon Dilated Coronary Arteries is Reduced by Local Delivery of the NO Donor, SIN-1 Via a cGMP-Dependent PathwayKeywords: Nitric oxide, Angioplasty, Endothelium-derived factors, Restenosis, Remodeling Abstract: Porcine coronary arteries were treated with PTCA and immediately afterwards locally treated for 5 minutes, with a selective cytosolic guanylate cyclase inhibitor, 1 H-(1,2,4)oxadiazole(4,3-alpha)quinoxaline-1-one (ODQ) + SIN-1 or only SIN-1 using a drug delivery-balloon. Arteries were angiographically depicted, morphologically evaluated and analyzed after one and eight weeks for actin, myosin and intermediate filaments (IF) and nitric oxide synthase (NOS) contents.Luminal diameter after PCI in arteries treated with SIN-1 alone and corrected for age-growth was significantly larger as compared to ODQ + SIN-1 or to controls (p < 0.01). IF/actin ratio after one week in SIN-1 treated segments was not different compared to untreated segments, but was significantly reduced compared to ODQ + SIN-1 treated vessels (p < 0.05). Expression of endothelial NADPH diaphorase activity was significantly lower in untreated segments and in SIN-1 treated segments compared to controls and SIN-1 + ODQ treated arteries (p < 0.01). Restenosis index (p < 0.01) and intimal hyperplasia (p < 0.01) were significantly reduced while the residual lumen was increased (p < 0.01) in SIN-1 segments compared to controls and ODQ + SIN-1 treated vessels.After PTCA local delivery of high concentrations of the NO donor SIN-1 for 5 minutes inhibited injury induced neointimal hyperplasia. This favorable effect was abolished by inhibition of guanylyl cyclase indicating mediation of a cyclic guanosine 3',5'-monophosphate (cGMP)-dependent pathway. The momentary events at the time of injury play crucial role in the ensuring development of intimal hyperplasia.Endothelial injury after PTCA results in denudation or even rupture of the internal elastic lamina, causing damage to smooth muscle cells (SMC) and release of signal substances, which in turn contribute to neointimal formation and often restenosis [1].Endothelial-derived NO reduces these events and modulates several physiological processes in the vasculature,
|