|
BMC Cancer 2006
Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancerAbstract: In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively.We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation.This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer.Cervical cancer (CC) is an important health problem and is a leading cause of cancer mortality worldwide in women. [1] When exposed to and infected by one of the high-risk human papillomaviruses (HPV), vulnerable cervical epithelium may enter a complex multistep process and develop an invasive carcinoma. [2-4] The spectrum of histologic alterations during the intricate processes of multistep carcinogenesis can be classified as premalignant lesions, including low-grade and high-grade squamous intraepithelial lesions (SILs), and malignant invasive cervical cancers. [5] Despite its strong association with CC, HPV infection alone is not sufficient for the cervical epithelium to fully develop an invasive cervical cancer. Persistent HPV infection contributes to the development of SILs, wit
|