全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Tecnura  2013 

Aprendizaje de estrategias de decisión en juegos repetitivos no cooperativos

Keywords: Genetic algorithms , programming languages , PSO , game theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article presents the design and implementation of different mechanisms applied to evolutionary processes within non-cooperative strategies, especially applied to the iterated prisoner's dilemma (a widely-used reference model in the field of evolutionary economics). The strategies developed for the evolution mechanisms were Genetic Algorithms (GA), whereas Particle Swarm Optimization (PSO) was used for the evolution of game strategies. The result is a simulation environment that can be used to verify the emergence of strategies. Emergent strategies can defeat other strategies through a training process. In this en vironment games can be specified using a block programming approach or a textual domain specific language, facilitating the programming tasks involved to a great extent.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133