全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2013 

Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

DOI: 10.3390/life3010038

Keywords: halophiles, extremophiles, hydrolases, saline environments

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs). On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

References

[1]  Ventosa, A. Unusual microorganisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity-Mechanism and Significance; Logan, N.A., Lppin-Scott, H.M., Oyston, P.C.F., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 223–253.
[2]  Kushner, D.J.; Kamekura, M. Physiology of halophilic eubacteria. In Halophilic Bacteria; Rodríguez-Varela, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 109–138.
[3]  Madigan, M.T.; Oren, A. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol.?1999, 2, 265–269, doi:10.1016/S1369-5274(99)80046-0.
[4]  Oren, A. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol.?2002, 28, 58–63.
[5]  Nieto, J.J.; Vargas, C. Synthesis of osmoprotectants by moderately halophilic bacteria: Genetic and applied aspects. Recent. Res. Devel. Microbiol.?2002, 6, 403–418.
[6]  Mellado, E.; Ventosa, A. Biotechnological potential of moderately and extremely halophilic microorganisms. In Microorganisms for Health Care, Food and Enzyme Production; Barredo, J.L., Ed.; Research Signpost: Kerala, India, 2003; pp. 233–256.
[7]  Gómez, J.; Steiner, W. The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol.?2004, 2, 223–235.
[8]  Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol.?2010, 31, 825–834, doi:10.1080/09593330903370026.
[9]  Zaccai, G. The effect of water on protein dynamics. Philos. Trans. R. Soc. Lond. B. Biol. Sci.?2004, 359, 1269–1275, doi:10.1098/rstb.2004.1503.
[10]  Salameh, M.; Wiegel, J. Lipases from extremophiles and potential for industrial applications. Adv. Appl. Microbiol.?2007, 61, 253–283, doi:10.1016/S0065-2164(06)61007-1.
[11]  Sánchez-Porro, C.; Martín, S.; Mellado, E.; Ventosa, A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol.?2003, 94, 295–300, doi:10.1046/j.1365-2672.2003.01834.x.
[12]  Ventosa, A. Taxonomy of moderately halophilic heterotrophic eubacteria. In Halophilic bacteria.; Rodríguez-Valera, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 71–84.
[13]  Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev.?1998, 62, 504–544.
[14]  Martín, S.; Márquez, M.C.; Sánchez-Porro, C.; Mellado, E.; Arahal, D.R.; Ventosa, A. Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int. J. Syst. Evol. Microbiol.?2003, 53, 1383–1387, doi:10.1099/ijs.0.02528-0.
[15]  Moreno, M.L.; García, M.T.; Ventosa, A.; Mellado, E. Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile. FEMS Microbiol. Ecol.?2009, 68, 59–71, doi:10.1111/j.1574-6941.2009.00651.x.
[16]  Ovreas, L.; Bourne, D.; Sandaa, R.A.; Casamayor, E.O.; Benlloch, S.; Goddard, V. Response of bacterial and viral communities to nutrient manipulations in sea water mesocosms. Aquat. Microbiol. Ecol.?2003, 31, 109–121, doi:10.3354/ame031109.
[17]  Maturrano, L.; Valens-Vadell, M.; Roselló-Mora, R.; Antón, J. Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Perú. Int. J. Syst. Evol. Microbiol.?2006, 56, 1685–1691, doi:10.1099/ijs.0.64200-0.
[18]  Rohban, R.; Amoozegar, M.A.; Ventosa, A. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol.?2009, 36, 333–340, doi:10.1007/s10295-008-0500-0.
[19]  Ghasemi, Y.; Rasoul-Amini, S.; Ebrahiminezhad, A.; Kazemi, A.; Shahbazia, M.; Talebniaa, N. Screening and Isolation of Extracellular Protease Producing Bacteria from the Maharloo Salt Lake. Iran. J. Pharm. Sci.?2011, 7, 175–180.
[20]  Ghasemi, Y.; Rasoul-Amini, S.; Kazemi, A.; Zarrini, G.; Morowvat, M.T.; Kargar, M. Isolation and Characterization of Some Moderately Halophilic Bacteria with Lipase Activity. Microbiology?2011, 80, 483–487, doi:10.1134/S0026261711040060.
[21]  Whitman, W.B; Coleman, D.C; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA?1998, 95, 6578–6583.
[22]  D'Hondt, S.; Rutherford, S.; Spivack, A.J. Metabolic activity of subsurface life in deep-sea sediments. Science?2012, 295, 2067–2070.
[23]  Parkes, R.J.; Webster, G.; Cragg, B.A.; Weightman, A.J.; Newberry, C.J.; Ferdelman, T.G.; Kallmeyer, J.; Jorgensen, B.B.; Aiello, I.W.; Fry, J.C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature?2005, 436, 390–394, doi:10.1038/nature03796.
[24]  Schippers, A.; Neretin, L.N.; Kallmeyer, J.; Ferdelman, T.G.; Cragg, B.A.; Parkes, R.J.; Jorgensen, B.B. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature?2005, 433, 861–864, doi:10.1038/nature03302.
[25]  Dang, H.; Zhu, H.; Wang, J.; Li, T. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J. Microbiol. Biotechnol.?2009, 25, 71–79, doi:10.1007/s11274-008-9865-5.
[26]  Dell’Anno, A.; Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science?2005, 309, 2179, doi:10.1126/science.1117475.
[27]  Cojoc, R.; Merciu, S.; Popescu, G.; Dumitru, L.; Kamekura, M.; Enache, M. Extracellular hydrolytic enzymes of halophilic bacteria isolated from a subterranean rock salt crystal. Rom. Biotechnol. Lett.?2009, 14, 4658–4664.
[28]  Moreno, M.L.; Piubeli, F.; Bonfá, M.R.; García, M.T.; Durrant, L.R.; Mellado, E. Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal-contaminated soils from the Atacama Desert and their biotechnological potentials. J. Appl. Microbiol.?2012, 113, 550–559, doi:10.1111/j.1365-2672.2012.05366.x.
[29]  Sorokin, D.Y.; Tindall, B.J. The status of the genus name Halovibrio. Fendrich 1988 and the identity of the strains Pseudomonas halophila DSM 3050 and Halomonas. variabilis DSM 3051. Request for an opinion. Int. J. Syst. Evol. Microbiol.?2006, 56, 487–489, doi:10.1099/ijs.0.63965-0.
[30]  García, M.T.; Mellado, E.; Ostos, J.C.; Ventosa, A. Halomonas. organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int. J. Syst. Evol. Microbiol.?2004, 54, 1723–1728, doi:10.1099/ijs.0.63114-0.
[31]  Ventosa, A.; Marquez, M.C.; Ruiz-Berraquero, F.; Kocur, M. Salinicoccus. roseus gen. nov., a new moderately halophilic Gram-positive coccus. Syst. Appl. Microbiol.?1990, 13, 29–33, doi:10.1016/S0723-2020(11)80177-3.
[32]  Khunt, M.; Pandhi, N.; Rana, A. Amylase from moderate halophiles isolated from wild ass excreta. Int. J. Pharm. Bio. Sci.?2011, 1, 586–592.
[33]  Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol.?2004, 50, 1–17, doi:10.1139/w03-076.
[34]  Delgado-García, M.; Valdivia-Urdiales, B.; Aguilar-González, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food. Agric.?2012, 92, 2575–2580, doi:10.1002/jsfa.5860.
[35]  Chahinian, H.; Ali, Y.B.; Abousalham, A.; Petry, S.; Mandrich, L.; Manco, G.; Canaan, S.; Sarda, L. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxyl esterases. Biochim. Biophys. Acta.?2005, 1738, 29–36, doi:10.1016/j.bbalip.2005.11.003.
[36]  Houde, A.; Kademi, A.; Leblanc, D. Lipases and their industrial applications: An overview. Appl. Biochem. Biotechnol.?2004, 46, 155–170.
[37]  Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol.?2002, 13, 390–397, doi:10.1016/S0958-1669(02)00341-5.
[38]  Park, J.H.; Ha, H.J.; Lee, W.K.; Généreux-Vincent, T.; Kazlauskas, R.J. Molecular basis for the stereoselective ammoniolysis of N-alkyl aziridine-2-carboxylates catalyzed by Candida antarctica lipase B. Chembiochem?2009, 10, 2213–2222, doi:10.1002/cbic.200900343.
[39]  Rodriguez, J.A.; Mendoza, L.D.; Pezzotti, F.; Vanthuyne, N.; Leclaire, J.; Verger, R.; Buono, G.; Carriere, F.; Fotiadu, F. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal. Biochem.?2008, 375, 196–208, doi:10.1016/j.ab.2007.11.036.
[40]  Snellman, E.A.; Colwell, R.R. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J. Ind. Microbiol. Biotechnol.?2004, 31, 391–400, doi:10.1007/s10295-004-0167-0.
[41]  Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. Engl.?2004, 43, 788–824.
[42]  Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microbiol. Technol.?2005, 39, 235–251.
[43]  Jaeger, K.E.; Holliger, P. Chemical biotechnology a marriage of convenience and necessity. Curr. Opin. Biotechnol.?2010, 21, 711–712, doi:10.1016/j.copbio.2010.09.017.
[44]  Jaeger, K.E.; Reetz, M.T. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol.?1998, 16, 396–403, doi:10.1016/S0167-7799(98)01195-0.
[45]  Snellman, E.A.; Sullivan, E.R.; Colwell, R.R. Purification and properties of the extracellular lipase, LipA of Acinetobacter. sp. RAG-1. FEBS. J.?2002, 269, 5771–5779.
[46]  Schmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature?2001, 409, 258–268.
[47]  Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol.?2007, 33, 183–209, doi:10.1080/10408410701451948.
[48]  Pérez, D.; Martín, S.; Fernández-Lorente, G.; Filice, M.; Guisán, J.M.; Ventosa, A.; García, M.T.; Mellado, E. A novel halophilic lipase, LipBL, with applications in synthesis of Eicosapentaenoic acid (EPA). PlosOne.?2011, doi:10.1371/journal.pone.0023325.
[49]  Pérez, D.; Ventosa, A.; Mellado, E.; Guisán, J.M.; Fernández-Lorente, G.; Filice, M. Lipasa LipBL y sus aplicaciones. Spanish Patent P201031636, 8 November 2010.
[50]  Pérez, D.; Kovacic, F.; Wilhelm, S.; Jaeger, K.E.; García, M.T.; Ventosa, A.; Mellado, E. Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology?2012, 158, 2192–2203, doi:10.1099/mic.0.058792-0.
[51]  Chand, S.; Mishra, P. Research and Application of Microbial Enzymes. India's. Contribution. Adv. Biochem. Eng. Biotechnol.?2003, 85, 95–124.
[52]  Li, A.N.; Li, D.C. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J. Appl. Microbiol.?2009, 106, 369–380.
[53]  Sánchez-Porro, C.; Mellado, E.; Bertoldo, C.; Antranikian, G.; Ventosa, A. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica. sp. strain CP76. Extremophiles.?2003, 7, 221–228.
[54]  Sánchez-Porro, C.; Mellado, E.; Martín, S.; Ventosa, A. Proteasa producida por una bacteria halófila moderada: modo de producción de la enzima. Spanish Patent P200300745, 26 March 2003.
[55]  Karbalaei-Heidari, H.R.; Amoozegar, M.A.; Hajighasemi, M.; Ziaee, A.A.; Ventosa, A. Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium Halobacillus karajensis. J. Ind. Microbiol. Biotechnol.?2009, 36, 21–27, doi:10.1007/s10295-008-0466-y.
[56]  Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem.?2000, 31, 135–152, doi:10.1042/BA19990073.
[57]  Shafiei, M.; Ziaee, A.A.; Amoozegar, M.A. Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. strain F. Extremophiles?2012, 16, 627–635.
[58]  Li, X.; Yu, H.Y. Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol.?2012, 57, 447–453, doi:10.1007/s12223-012-0160-3.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133