The prebiotic relevance of mineral struvite, MgNH 4PO 4·6H 2O, was studied experimentally as a phosphorylating reagent and, theoretically, to understand the geochemical requirements for its formation. The effectiveness of phosphorylation by the phosphate mineral, monetite, CaHPO 4, was also studied to compare to the efficiency of struvite. The experiments focused on the phosphorylation reactions of the minerals with organic compounds, such as nucleosides, glycerol and choline chloride, and heat at 75 °C for about 7–8 days and showed up to 28% phosphorylation of glycerol. In contrast, the compositional requirements for the precipitation of struvite are high ammonium and phosphate concentrations, as well as a little Ca 2+ dissolved in the water. Combined, these requirements suggest that it is not likely that struvite was present in excess on the early Earth to carry out phosphorylation reactions. The present study focuses on the thermodynamic aspects of struvite formation, complementing the results given by Orgel and Handschuh (1973), which were based on the kinetic effects.
References
[1]
Pasek, M.A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA?2008, 105, 853–858, doi:10.1073/pnas.0708205105.
[2]
Pasek, M.A.; Kee, T.P. On the origin of phosphorylated biomolecules. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Berlin, Heidelberg, Germany, 2011; pp. 57–84.
[3]
Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T. Entropy and charge in molecular evolution-the case of phosphate. J. Theor. Biol.?1997, 187, 503–522, doi:10.1006/jtbi.1996.0385.
Gulick, A. Phosphorus as a factor in the origin of life. Am. Sci.?1955, 43, 479–489.
[6]
Gedulin, B.; Arrhenius, G. Sources and geochemical evolution of RNA precursor molecules—The role of phosphate. In Early Life on Earth, Nobel Symposium; Bengston, S., Ed.; Columbia University Press: New York, NY, USA, 1994; Volume 84, pp. 91–110.
[7]
Pasek, M.A.; Kee, T.P.; Bryant, D.E.; Pavlov, A.A.; Lunine, J.I. Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew. Chem. Int. Ed.?2008, 47, 7918–7920.
Ferris, J.P.; Nicodem, D.E. Ammonia photolysis and the Role of ammonia in chemical revolution. Nature?1972, 238, 268–269, doi:10.1038/238268a0.
[11]
Smirnov, A.; Hausner, D.; Laffers, R.; Strongin, D.R.; Schoonen, M.A.A. Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans.?2008, 9, 1–20, doi:10.1186/1467-4866-9-1.
[12]
Hargreaves, W.R.; Mulvihill, S.J.; Deamer, D.W. Synthesis of phospholipids and membranes in prebiotic conditions. Nature?1977, 266, 78–80, doi:10.1038/266078a0.
[13]
Gull, M.; Yu, W.; Yingwu, W.; Zhan, S.; Ge, T.; Shouhua, F. Mimicking the prebiotic acidic hydrothermal environment: One-pot prebiotic hydrothermal synthesis of glucose phosphates. Heteroat. Chem.?2011, 22, 186–191, doi:10.1002/hc.20675.
[14]
Gull, M.; Ge, T.; Yingwu, W.; Chao, H.; Zhan, S.; Hongming, Y.; Shouhua, F. Resolving the enigma of prebiotic C-O-P bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroat. Chem.?2010, 21, 161–167.
[15]
HSC Chemistry Program Web Site. Available online: https://www.hsc-chemistry.net/ (accessed on 15 April 2013).
[16]
White, W.B.; Johnson, S.M.; Dantzig, G.B. Chemical equilibrium in complex mixtures. J. Chem. Phys.?1958, 28, 751–755, doi:10.1063/1.1744264.
[17]
Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early earth. Astrobiology?2005, 5, 515–535, doi:10.1089/ast.2005.5.515.
[18]
Pasek, M.A.; Greenberg, R. Acidification of Europa’s subsurface ocean as a consequence of oxidant delivery. Astrobiology?2012, 12, 151–159, doi:10.1089/ast.2011.0666.
[19]
Pasek, M.A.; Block, K.; Pasek, V. Fulgurite morphology: A classification scheme and clues to formation. Contrib. Mineral. Petrol.?2012, 164, 477–492, doi:10.1007/s00410-012-0753-5.
[20]
Bhuiyan, M.I.; Mavinic, D.S.; Beckie, R.D. A solubility and thermodynamic study of struvite. Environ. Technol.?2007, 28, 1015–1026, doi:10.1080/09593332808618857.
[21]
Kim, D.; Ryu, H.-D.; Kim, M.-S.; Kim, J.; Lee, S.-I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal land?ll leachate. J. Hazard. Mater.?2006, 146, 81–85.
[22]
Bouropoulos, N.C.; Koutsoukos, P.G. Spontaneous precipitation of struvite from aqueous solutions. J. Cryst. Growth?2000, 213, 381–388, doi:10.1016/S0022-0248(00)00351-1.
[23]
Martens, C.S.; Harriss, R.C. Inhibition of apatite precipitation in the marine environment by magnesium ion. Geochim. Cosmochim. Acta?1970, 34, 621–625, doi:10.1016/0016-7037(70)90020-7.
[24]
Tatur, A.; Keck, A. Phosphates in Ornithogenic soils of the maritime Antarctic. Proc. NIPR Symp. Polar Biol.?1990, 3, 133–150.
[25]
Konhauser, K.O.; Lalonde, S.V.; Amskold, L.; Holland, H.D. Was there really an Archean phosphate crisis? Science?2007, 315, 1234, doi:10.1126/science.1136328.
[26]
Paytan, A.; McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev.?2007, 107, 563–576, doi:10.1021/cr0503613.
[27]
Pasek, M.A.; Lauretta, D.S. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig. Life Evol. Biospheres?2008, 38, 5–21, doi:10.1007/s11084-007-9110-5.
[28]
Cullen, D.J. Mineralogy of nitrogenous guano on the Bounty islands, SW Pacific ocean. Sedimentology?1988, 35, 421–428, doi:10.1111/j.1365-3091.1988.tb00995.x.
Booker, N.A.; Priestley, A.J.; Fraser, I.H. Struvite formation in waste water treatment plants opportunities for nutrient recovery. Environ. Technol.?1999, 20, 777–782, doi:10.1080/09593332008616874.
[31]
Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during Schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta?2007, 71, 1721–1736, doi:10.1016/j.gca.2006.12.018.