全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2013 

Predator Avoidance in Extremophile Fish

DOI: 10.3390/life3010161

Keywords: antipredator behavior, hydrogen sulfide, Poecilia, predator avoidance, predator recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail ( Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared ( i.e., predator-na?ve) and wild-caught ( i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

References

[1]  Magnhagen, C. Predation risk as a cost of reproduction. Trends Ecol. Evol.?1991, 6, 183–186, doi:10.1016/0169-5347(91)90210-O.
[2]  Kelley, J.L.; Magurran, A.E. Learned predator recognition and antipredator responses in fishes. Fish. Fish.?2003, 4, 216–226, doi:10.1046/j.1467-2979.2003.00126.x.
[3]  Utne-Palm, A. Response of naive two-spotted gobies Gobiusculus flavescens to visual and chemical stimuli of their natural predator, cod Gadus morhua. Mar. Ecol. Prog. Ser.?2001, 218, 267–274, doi:10.3354/meps218267.
[4]  Kelley, J.L.; Magurran, A.E. Effects of relaxed predation pressure on visual predator recognition in the guppy. Behav. Ecol. Sociobiol.?2003, 54, 225–232, doi:10.1007/s00265-003-0621-4.
[5]  Chivers, D.P.; Smith, R.J.F. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. écoscience?1998, 5, 338–352.
[6]  Crowl, T.A.; Covich, A.P. Responses of a freshwater shrimp to chemical and tactile stimuli from a large decapod predator. J. N. Am. Benthol. Soc.?1994, 13, 291–298, doi:10.2307/1467247.
[7]  Mahon, A.R.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Chemo-tactile predator avoidance responses of the common Antarctic limpet Nacella concinna. Polar Biol.?2002, 25, 469–473.
[8]  Wisenden, B.; Pogatshnik, J.; Gibson, D.; Bonacci, L.; Schumacher, A.; Willett, A. Sound the alarm: learned association of predation risk with novel auditory stimuli by fathead minnows (Pimephales promelas) and glowlight tetras (Hemigrammus erythrozonus) after single simultaneous pairings with conspecific chemical alarm cues. Environ. Biol. Fish.?2008, 81, 141–147.
[9]  Blumstein, D.T. The multipredator hypothesis and the evolutionary persistence of antipredator behavior. Ethology?2006, 112, 209–217, doi:10.1111/j.1439-0310.2006.01209.x.
[10]  Endler, J.A. Natural selection on color patterns in Poecilia reticulata. Evolution?1980, 34, 76–91, doi:10.2307/2408316.
[11]  Endler, J.A.; Houde, A.E. Geographic variation in female preferences for males traits in Poecilia reticulata. Evolution?1995, 49, 456–468, doi:10.2307/2410270.
[12]  Byers, J.A. American pronghorn: Social adaptations and the ghosts of predators past; University of Chicago Press: Chicago, IL, USA, 1997.
[13]  Coss, R.G. Effects of relaxed natural selection on the evolution of behavior. In Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms; Foster, S.A., Endler, J.A., Eds.; Oxford Univ. Press: Oxford, UK, 1999; pp. 180–208.
[14]  Blumstein, D.T.; Daniel, J.C. Isolation from mammalian predators differentially affects two congeners. Behav. Ecol.?2002, 13, 657–663, doi:10.1093/beheco/13.5.657.
[15]  Griffin, A.S.; Blumstein, D.T.; Evans, C. Training captive-bred or translocated animals to avoid predators. Conserv. Biol.?2000, 14, 1317–1326, doi:10.1046/j.1523-1739.2000.99326.x.
[16]  Magurran, A.E. The causes and consequences of geographic variation in antipredator behavior: perspectives from fish populations. In Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms; Foster, S.A., Endler, J.A., Eds.; Oxford Univ. Press: New York, USA, 1999; pp. 139–163.
[17]  Brown, G.E.; Chivers, D.P.; Smith, R.J.F. Differential learning rates of chemical versus visual cues of a northern pike by fathead minnows in a natural habitat. Environ. Biol. Fish.?1997, 49, 89–96, doi:10.1023/A:1007302614292.
[18]  Bierbach, D.; Schulte, M.; Herrmann, N.; Tobler, M.; Stadler, S.; Jung, C.T.; Kunkel, B.; Riesch, R.; Klaus, S.; Ziege, M.; Indy, J.R.; Arias-Rodriguez, L.; Plath, M. Predator-induced changes of female mating preferences: innate and experiential effects. BMC Evol. Biol.?2011, 11, 190, doi:10.1186/1471-2148-11-190. 21726456
[19]  Tobler, M.; Schlupp, I.; Heubel, K.U.; Riesch, R.; Garcia de León, F.J.; Giere, O.; Plath, M. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles?2006, 10, 577–585, doi:10.1007/s00792-006-0531-2.
[20]  Riesch, R.; Duwe, V.; Herrmann, N.; Padur, L.; Ramm, A.; Scharnweber, K.; Schulte, M.; Schulz-Mirbach, T.; Ziege, M.; Plath, M. Variation along the shy–bold continuum in extremophile fishes (Poecilia mexicana, Poecilia sulphuraria). Behav. Ecol. Sociobiol.?2009, 63, 1515–1526, doi:10.1007/s00265-009-0780-z.
[21]  Bagarinao, T. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat. Toxicol.?1992, 24, 21, doi:10.1016/0166-445X(92)90015-F.
[22]  Grieshaber, M.K.; V?lkel, S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu. Rev. Physiol.?1998, 60, 33–53, doi:10.1146/annurev.physiol.60.1.33.
[23]  Plath, M.; Tobler, M.; Riesch, R.; Garcia de León, F.J.; Giere, O.; Schlupp, I. Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften?2007, 94, 991–996, doi:10.1007/s00114-007-0279-2.
[24]  Tobler, M.; Riesch, R.; Tobler, C.M.; Plath, M. Compensatory behavior in response to sulphide-induced hypoxia affects time budgets, feeding efficiency, and predation risk. Evol. Ecol. Res.?2009, 11, 935–948.
[25]  Riesch, R.; Oranth, A.; Dzienko, J.; Karau, N.; Schie?l, A.; Stadler, S.; Wigh, A.; Zimmer, C.; Arias-Rodriguez, L.; Schlupp, I.; Plath, M. Extreme habitats are not refuges: Poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats. Biol. J. Linn. Soc.?2010, 101, 417–426, doi:10.1111/j.1095-8312.2010.01522.x.
[26]  Roach, K.A.; Tobler, M.; Winemiller, K.O. Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology?2011, 92, 2056–2062, doi:10.1890/11-0276.1. 22164830
[27]  Plath, M.; Heubel, K.U.; Garcia de León, F.J.; Schlupp, I. Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well-fed males. Behav. Ecol. Sociobiol.?2005, 58, 144–151, doi:10.1007/s00265-005-0918-6.
[28]  Riesch, R.; Plath, M.; Schlupp, I. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae). J. Evol. Biol.?2011, 24, 596–606, doi:10.1111/j.1420-9101.2010.02194.x.
[29]  Riesch, R.; Plath, M.; Schlupp, I. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology?2010, 91, 1494–1505, doi:10.1890/09-1008.1. 20503881
[30]  Gordon, M.S.; Rosen, D.E. A cavernicolous form of the poeciliid dish Poecilia sphenops from Tabasco, México. Copeia?1962, 1962, 360–368, doi:10.2307/1440903.
[31]  Tobler, M.; Palacios, M.; Chapman, L.J.; Mitrofanov, I.; Bierbach, D.; Plath, M.; Arias-Rodriguez, L.; Garcia de León, F.J.; Mateos, M. Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution?2011, 65, 2213–2228, doi:10.1111/j.1558-5646.2011.01298.x.
[32]  Tobler, M.; Riesch, R.; Garcia de León, F.J.; Schlupp, I.; Plath, M. Two endemic and endangered fishes, Poecilia sulphuraria (Alvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei) as only survivors in a small sulphidic habitat. J. Fish. Biol.?2008, 72, 523–533, doi:10.1111/j.1095-8649.2007.01716.x.
[33]  Tobler, M.; Franssen, C.M.; Plath, M. Male-biased predation of a cave fish by a giant water bug. Naturwissenschaften?2008, 95, 775–779, doi:10.1007/s00114-008-0382-z.
[34]  Tobler, M.; Schlupp, I.; Plath, M. Predation of a cave fish (Poecilia mexicana, Poeciliidae) by a giant water-bug (Belostoma, Belostomatidae) in a Mexican sulphur cave. Ecol. Entomol.?2007, 32, 492–495, doi:10.1111/j.1365-2311.2007.00892.x.
[35]  Horstkotte, J.; Riesch, R.; Plath, M.; J?ger, P. Predation on a cavefish (Poecilia mexicana) by three species of spiders in a Mexican sulfur cave. Bull. Br. Arachnol. Soc.?2010, 15, 55–58, doi:10.13156/arac.2010.15.2.55.
[36]  Klaus, S.; Plath, M. Predation on a cave fish by the freshwater crab Avotrichodactylus bidens (Bott, 1969) (Brachyura, Trichodactylidae) in a Mexican sulfur cave. Crustaceana?2011, 84, 411–418, doi:10.1163/001121611X560853.
[37]  Miller, R.R. Freshwater Fishes of Mexico; University of Chicago Press: Chicago, IL, USA, 2006.
[38]  Conkel, D. Cichlids of North. and Central America; T.F.H. Publications: Neptune City, NJ, USA, 1993.
[39]  Plath, M.; Schlupp, I. Parallel evolution leads to reduced shoaling behavior in two cave dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei). Environ. Biol. Fish.?2008, 82, 289–297, doi:10.1007/s10641-007-9291-9.
[40]  Parzefall, J. Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschlie?lich einer H?hlenform von Mollienesia sphenops. Behaviour?1969, 33, 1–38, doi:10.1163/156853969X00297.
[41]  Parzefall, J. Rückbildung aggressiver Verhaltensweisen bei einer H?hlenform von Poecilia sphenops (Pisces, Poeciliidae). Z. Tierpsychol.?1974, 35, 66–84, doi:10.1111/j.1439-0310.1974.tb00433.x.
[42]  Bierbach, D.; Klein, M.; Sassmannshausen, V.; Schlupp, I.; Riesch, R.; Parzefall, J.; Plath, M. Divergent evolution of male aggressive behaviour: another reproductive isolation mechanism in extremophile poeciliid fishes. Int. J. Evol. Biol.?2012, 2012.
[43]  Peters, N.; Peters, G.; Parzefall, J.; Wilkens, H. über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen H?hlenform von Poecilia sphenops (Pisces, Poeciliidae). Int. Rev. Gesamten Hydrobiol. Hydrogr.?1973, 58, 417–436, doi:10.1002/iroh.19730580308.
[44]  Plath, M.; Hauswaldt, J.S.; Moll, K.; Tobler, M.; Garcia de León, F.J.; Schlupp, I.; Tiedemann, R. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Mol. Ecol.?2007, 16, 967–976. 17305854
[45]  Fontanier, M.; Tobler, M. A morphological gradient revisited: cave mollies vary not only in eye size. Environ. Biol. Fish.?2009, 86, 285–292, doi:10.1007/s10641-009-9522-3.
[46]  K?rner, K.E.; Schlupp, I.; Plath, M.; Loew, E.R. Spectral sensitivity of mollies: comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J. Fish. Biol.?2006, 69, 54–65, doi:10.1111/j.1095-8649.2006.01056.x.
[47]  Ferrari, M.C.O.; Gonzalo, A.; Messier, F.; Chivers, D.P. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc. Roy. Soc. B?2007, 274, 1853–1859, doi:10.1098/rspb.2007.0297.
[48]  Greven, H. Gonads, genitals, and reproductive biology. In Ecology and Evolution of Poeciliid Fishes; Evans, J., Pilastro, A., Schlupp, I., Eds.; Chicago University Press: Chicago, IL, USA, 2011.
[49]  Evans, J.; Pilastro, A. Postcopulatory sexual selection. In Ecology and Evolution of Poeciliid Fishes; Evans, J., Pilastro, A., Schlupp, I., Eds.; Chicago University Press: Chicago, IL, USA, 2011.
[50]  Plath, M.; Makowicz, A.M.; Schlupp, I.; Tobler, M. Sexual harassment in live-bearing fishes (Poeciliidae): Comparing courting and noncourting species. Behav. Ecol.?2007, 18, 680–688, doi:10.1093/beheco/arm030.
[51]  Parzefall, J. A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. Environ. Biol. Fish.?2001, 62, 263–275, doi:10.1023/A:1011899817764.
[52]  Kullander, S.O. Cichlidae (Cichlids); EDIPUCRS: Porto Alegre, Brasil, 2003.
[53]  Peckarsky, B.L.; Penton, M.A. Why do Ephemerella nymphs scorpion posture - A ghost of predation past. Oikos?1988, 53, 185–193, doi:10.2307/3566061.
[54]  Warburton, K.; Lees, N. Species discrimination in guppies: learned responses to visual cues. Anim. Behav.?1996, 52, 371–378, doi:10.1006/anbe.1996.0181.
[55]  Harris, S.; Ramnarine, I.W.; Smith, H.G.; Pettersson, L.B. Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos?2010, 119, 1711–1718, doi:10.1111/j.1600-0706.2010.18028.x.
[56]  Riesch, R.; Schlupp, I.; Tobler, M.; Plath, M. Reduction of the association preference for conspecifics in cave-dwelling Atlantic mollies, Poecilia mexicana. Behav. Ecol. Sociobiol.?2006, 60, 794–802, doi:10.1007/s00265-006-0223-z.
[57]  Krause, J.; Ruxton, G.D. Living in groups; Oxford University Press: Oxford, 2002.
[58]  Botham, M.S.; Hayward, R.K.; Morrell, L.J.; Croft, D.P.; Ward, J.R.; Ramnarine, I.; Krause, J. Risk-sensitive antipredator behavior in the Trinidadian guppy, Poecilia reticulata. Ecology?2008, 89, 3174–3185, doi:10.1890/07-0490.1.
[59]  Karplus, I.; Algom, D. Visual cues for predator face recognition by reef fishes. Z. Tierpsychol.?1981, 55, 343–364.
[60]  Brown, G.E.; Chivers, D.P. Learning about danger: chemical alarm cues and local risk assessment in prey fishes. In Fish Cognition and Behaviour; Brown, C., Laland, K.N., Krause, J., Eds.; Blackwell: London, UK, 2006; pp. 49–69.
[61]  Kelley, J.L.; Brown, C. Predation risk and decision-making in poeciliid prey. In Ecology and Evolution of Poeciliid Fishes; Evans, J.P., Pilastro, A., Schlupp, I., Eds.; University of Chicago Press: Chicago, IL, USA, 2011; pp. 174–184.
[62]  Fisher, H.S.; Wong, B.B.M.; Rosenthal, G.G. Alteration of the chemical environment disrupts communication in a freshwater fish. Proc. Roy. Soc. B?2006, 273, 1187–1193, doi:10.1098/rspb.2005.3406.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133