Cell-to-cell communication, or quorum-sensing (QS), systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs), which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC) analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4) as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog. Phylogenetic analysis showed that sequences from Halomonadaceae species grouped together and were distinct from other members of the Gammaproteobacteria and also from species belonging to the Alphaproteobacteria and Betaproteobacteria.
References
[1]
Brock, T. Halophilic-blue-green algae. Arch. Microbiol.?1976, 107, 109–111, doi:10.1007/BF00427875.
[2]
Rodríguez-Valera, F. Characteristics and microbial ecology of hypersaline environments. In Halophilic Bacteria; Rodríguez-Valera, F., Ed.; CRC Press: Boca Raton, Florida, USA, 1988; Volume 1, pp. 3–30.
[3]
Cifuentes, A.; Antón, J.; De Wit, R.; Rodríguez-Valera, F. Diversity of Bacteria and Archaea in sulphate-reducing enrichment cultures inoculated from serial dilution of Zostera noltii rhizosphere samples. Environ. Microbiol.?2003, 5, 754–764, doi:10.1046/j.1470-2920.2003.00470.x.
[4]
González-Toril, E.; Llobet-Brossa, E.; Casamayor, E.O.; Amann, R.; Amils, R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol.?2003, 69, 4853–4865, doi:10.1128/AEM.69.8.4853-4865.2003.
[5]
Horikoshi, K.; Grant, W.D. Extremophiles: Microbial Life in Extreme Environments; Wiley-Liss: New York, USA, 1998.
[6]
Ventosa, A. Unusual micro-organisms from unusual habitats: Hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance; Logan, N.A., Lappin-Scott, H.M., Oyston, P.C.F., Eds.; Cambridge University Press: New York, USA, 2006; pp. 223–253.
[7]
Franzmann, P.D.; Wehmeyer, U.; Stackebrandt, E. Halomonadaceae fam. nov., a new family of the Class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol.?1988, 11, 16–19, doi:10.1016/S0723-2020(88)80043-2.
[8]
Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev.?1998, 62, 504–544. 9618450
[9]
Euzéby, J.P. List of Prokaryotic Names with Standing in Nomenclature. 2012. Available online: http://www.bacterio.cict.fr/ (accessed on 15 November 2012).
[10]
Kushner, D.; Kamekura, M. Physiology of halophilic eubacteria. In Halophilic Bacteria; Rodríguez-Valera, F., Ed.; CRC Press: Boca Raton, Florida, USA, 1988; Volume 1, pp. 87–103.
[11]
Ventosa, A.; Mellado, E.; Sánchez-Porro, C.; Márquez, M.C. Halophilic and halotolerant micro-organisms from soils. In Microbiology of Extreme Soils; Dion, P., Nautiyal, C., Eds.; Springer-Verlag: Heidelberg, Germany, 2008; Volume 13, pp. 87–115.
[12]
Nieto, J.J.; Carmen, V.M. Synthesis of osmoprotectants by moderately halophilic bacteria: Genetic and applied aspects. In Recent Research and Development in Endocrinology; Transworld Research Network: Kerala, India, 2002; pp. 403–418.
[13]
De la Haba, R.R.; Sánchez-Porro, C.; Márquez, M.C.; Ventosa, A. Taxonomy of Halophiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer: New York, NY, USA, 2011.
[14]
Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol.?2010, 31, 825–834, doi:10.1080/09593330903370026.
[15]
Kaye, J.Z.; Baross, J.A. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol. Ecol.?2000, 32, 249–260, doi:10.1111/j.1574-6941.2000.tb00718.x.
[16]
Oueriaghli, N.; González-Domenech, C.M.; Martínez-Checa, F.; Muyzer, M.; Quesada, E.; Béjar, V. Estudio molecular de la diversidad del género Halomonas en Rambla Salada mediante DGGE, CARD-FISH y análisis multivariable. In Presented at the XIV Reunión del Grupo de Taxonomía Filogenia y Biodiversidad Microbiana (SEM), Granada, Espa?a, 10-11 May 2012.
[17]
Parker, C.T.; Sperandio, V. Cell-to-cell signalling during pathogenesis. Cell. Microbiol.?2009, 11, 363–369, doi:10.1111/j.1462-5822.2008.01272.x.
[18]
Williams, P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology?2007, 153, 3923–3938, doi:10.1099/mic.0.2007/012856-0.
[19]
Jung, K.; Fried, L.; Behr, S.; Heermann, R. Histidine kinases and response regulators in networks. Curr. Opin. Microbiol.?2012, 15, 118–124, doi:10.1016/j.mib.2011.11.009. 22172627
[20]
González, J.E.; Marketon, M.M. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev.?2003, 67, 574–592, doi:10.1128/MMBR.67.4.574-592.2003.
Eberhard, A.; Longin, T.; Widrig, C.A.; Stranick, S.J. Synthesis of the lux gene autoinducer in Vibrio fischeri is positively autoregulated. Arch. Microbiol.?1991, 155, 294–297, doi:10.1007/BF00252215.
[23]
Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol.?1994, 176, 269–275. 8288518
[24]
Swift, S.; Williams, P.; Stewart, G.S.A.B. N-acyl homoserine lactones and quorum sensing in proteobacteria. In Cell-Cell Signaling in Bacteria.; Dunny, G.M., Winans, S.C., Eds.; American Society of Microbiology Press: Washington, DC, USA, 1999; pp. 291–314.
[25]
Case, R.J.; Labbate, M.; Kjelleberg, S. AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. The ISME J.?2008, 2, 345–349, doi:10.1038/ismej.2008.13.
[26]
Llamas, I.; Quesada, E.; Martínez-Cánovas, M.J.; Gronquist, M.; Eberhard, A.; González, J.E. Quorum sensing in halophilic bacteria: Detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas. Extremophiles.?2005, 9, 333–341, doi:10.1007/s00792-005-0448-1.
[27]
Tahrioui, A.; Quesada, E.; Llamas, I. The hanR/hanI quorum-sensing system of Halomonas anticariensis, a moderately halophilic bacterium. Microbiology?2011, 157, 3378–3387, doi:10.1099/mic.0.052167-0.
[28]
Tahrioui, A.; Quesada, E.; Llamas, I. Genetic and phenotypic analysis of the GacS/GacA system in the moderate halophile Halomonas anticariensis. Microbiology?2013, 159, 461–473.
[29]
Amjres, H.; Béjar, V.; Quesada, E.; Abrini, J.; Llamas, I. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int. J. Syst. Evol. Microbiol.?2011, 61, 2600–2605, doi:10.1099/ijs.0.027268-0.
[30]
Dobson, S.J.; Franzmann, P.D. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the Species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the Genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol.?1996, 46, 550–558, doi:10.1099/00207713-46-2-550.
[31]
González-Domenech, C.M.; Béjar, V.; Martínez-Checa, F.; Quesada, E. Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int. J. Syst. Evol. Microbiol.?2008, 58, 872–876, doi:10.1099/ijs.0.65415-0.
[32]
González-Domenech, C.M.; Martínez-Checa, F.; Quesada, E.; Béjar, V. Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol.?2008, 58, 803–809, doi:10.1099/ijs.0.65322-0.
[33]
González-Domenech, C.M.; Martínez-Checa, F.; Quesada, E.; Béjar, V. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int. J. Syst. Evol. Microbiol.?2009, 59, 1290–1296, doi:10.1099/ijs.0.004275-0. 19502304
[34]
Llamas, I.; Béjar, V.; Martínez-Checa, F.; Martínez-Cánovas, M.J.; Molina, I.; Quesada, E. Halomonas stenophila sp. nov., a halophilic bacterium that produces sulphate exopolysaccharides with biological activity. Int. J. Syst. Evol. Microbiol.?2011, 61, 2508–2514, doi:10.1099/ijs.0.026369-0.
[35]
Luque, R.; Béjar, V.; Quesada, E.; Martínez-Checa, F.; Llamas, I. Halomonas ramblicola sp. nov., a moderately halophilic bacterium from Rambla Salada, a Mediterranean hypersaline rambla in south-east Spain. Int. J. Syst. Evol. Microbiol.?2012, 62, 2903–2909, doi:10.1099/ijs.0.039453-0.
[36]
Martínez-Cánovas, M.J.; Béjar, V.; Martínez-Checa, F.; Quesada, E. Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland, wildfowl reserve in Málaga, Southern Spain. Int. J. Syst. Evol. Microbiol.?2004, 54, 1329–1332, doi:10.1099/ijs.0.63108-0.
[37]
Martínez-Cánovas, M.J.; Quesada, E.; Llamas, I.; Béjar, V. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol.?2004, 54, 733–737, doi:10.1099/ijs.0.02942-0.
[38]
Quesada, E.; Valderrama, M.J.; Bejar, V.; Ventosa, A.; Gutierrez, M.C.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int. J. Syst. Bacteriol.?1990, 40, 261–267, doi:10.1099/00207713-40-3-261.
[39]
Valderrama, M.J.; Quesada, E.; Béjar, V.; Ventosa, A.; Gutierrez, M.C.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int. J. Syst. Bacteriol.?1991, 41, 377–384, doi:10.1099/00207713-41-3-377.
[40]
Martínez-Checa, F.; Béjar, V.; Martínez-Cánovas, M.J.; Llamas, I.; Quesada, E. Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int. J. Syst. Evol. Microbiol.?2005, 55, 2007–2011, doi:10.1099/ijs.0.63676-0.
[41]
Mellado, E.; Moore, E.R.B.; Nieto, J.J.; Ventosa, A. Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int. J. Syst.Bacteriol.?1995, 45, 712–716, doi:10.1099/00207713-45-4-712.
[42]
Steindler, L.; Venturi, V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett.?2007, 266, 1–9, doi:10.1111/j.1574-6968.2006.00501.x.
[43]
McClean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Cámara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; et al. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology?1997, 143, 3703–3711, doi:10.1099/00221287-143-12-3703.
[44]
Shaw, P.D.; Ping, G.; Daly, S.L.; Cha, C.; Cronan, J.E., Jr.; Rinehart, K.L.; Farrand, S.K. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA?1997, 94, 6036–6041, doi:10.1073/pnas.94.12.6036. 9177164
[45]
García-Aljaro, C.; Eberl, L.; Riedel, K.; Blanch, A. Detection of quorum-sensing-related molecules in Vibrio scophthalmi. BMC Microbiol.?2008, 8, 138, doi:10.1186/1471-2180-8-138.
[46]
Yang, Q.; Han, Y.; Zhang, X.H. Detection of quorum sensing signal molecules in the family Vibrionaceae. J. Appl. Microbiol.?2011, 110, 1438–1448, doi:10.1111/j.1365-2672.2011.04998.x.
[47]
Parsek, M.R.; Greenberg, E.P. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA?2000, 97, 8789–8793, doi:10.1073/pnas.97.16.8789.
[48]
Parsek, M.R.; Schaefer, A.L.; Greenberg, E.P. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiol.?1997, 26, 301–310, doi:10.1046/j.1365-2958.1997.5741935.x.
[49]
Hanzelka, B.L.; Parsek, M.R.; Val, D.L.; Dunlap, P.V.; Cronan, J.E.; Greenberg, E.P. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol.?1999, 181, 5766–5770. 10482519
[50]
Milton, D.L.; Chalker, V.J.; Kirke, D.; Hardman, A.; Cámara, M.; Williams, P. The LuxM Homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)-homoserine lactone and N-hexanoyl-homoserine lactone. J. Bacteriol.?2001, 183, 3537–3547, doi:10.1128/JB.183.12.3537-3547.2001.
[51]
Laue, B.E.; Jiang, Y.; Chhabra, S.R.; Jacob, S.; Stewart, G.S.A.B.; Hardman, A.; Downie, J.A.; O'Gara, F.; Williams, P. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology?2000, 146, 2469–2480. 11021923
[52]
Haynes, W.C.; Wickerham, L.J.; Hesseltine, C.W. Maintenance of cultures of industrially important microorganisms. Appl. Microbiol.?1955, 3, 361–368. 13269089
[53]
Moraine, R.A.; Rogovin, P. Kinetics of polysaccharide B-1459 fermentation. Biotechnol. Bioeng.?1966, 8, 511–524, doi:10.1002/bit.260080405.
[54]
Rodríguez-Valera, F.; Ruíz-Berraquero, F.; Ramos-Cormenzana, A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol.?1981, 7, 235–243, doi:10.1007/BF02010306. 24227498
[55]
Cha, C.; Gao, P.; Chen, Y.-C.; Shaw, P.D.; Farrand, S.K. Production of acyl-Homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol. Plant. Microbe In.?1998, 11, 1119–1129, doi:10.1094/MPMI.1998.11.11.1119.
[56]
Marketon, M.M.; Gronquist, M.R.; Eberhard, A.; González, J.E. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol.?2002, 184, 5686–5695, doi:10.1128/JB.184.20.5686-5695.2002.
[57]
Llamas, I.; Keshavan, N.; González, J.E. Use of Sinorhizobium meliloti as an indicator for specific detection of longchain N-acyl homoserine lactones. Appl. Environ. Microbiol.?2004, 70, 3715–3723, doi:10.1128/AEM.70.6.3715-3723.2004.
[58]
Marmur, J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol.?1961, 3, 208–218, doi:10.1016/S0022-2836(61)80047-8.
[59]
Martín-Platero, A.M.; Valdivia, E.; Maqueda, M.; Martínez-Bueno, M. Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal. Biochem.?2007, 366, 102–104, doi:10.1016/j.ab.2007.03.010.
[60]
Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd Ed. ed.; Cold Spring Harbor Laboratory Press: New York, USA, 2001.
[61]
National Center for Biotechnology Information, N. Available online: http://www.ncbi.nlm.nih.gov/ (accessed on 15 November 2012).
[62]
Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol.Biol. Evol.?2007, 24, 1596–1599, doi:10.1093/molbev/msm092.
[63]
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.?1997, 25, 4876–4882, doi:10.1093/nar/25.24.4876.