全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2013 

Properties of Halococcus salifodinae, an Isolate from Permian Rock Salt Deposits, Compared with Halococci from Surface Waters

DOI: 10.3390/life3010244

Keywords: Halococcus species, Halococcus salifodinae, haloarchaea, Permian salt deposit, cell wall polymer, polyhydroxyalkanoate, prokaryotic evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Halococcus salifodinae BIp T DSM 8989 T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl), whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing hypotheses on prokaryotic evolution, such as the molecular clock concept, or the net-like history of genome evolution. A comparison of available taxonomic characteristics from strains of Hcc. salifodinae and other Halococcus species, most of them originating from surface waters, is presented. The cell wall polymer of Hcc. salifodinae was examined and found to be a heteropolysaccharide, similar to that of Hcc. morrhuae. Polyhydroxyalkanoate granules were present in Hcc. salifodinae, suggesting a possible lateral gene transfer before Permian times.

References

[1]  Denner, E.B.M.; McGenity, T.J.; Busse, H.-J.; Wanner, G.; Grant, W.D.; Stan-Lotter, H. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. System. Bacteriol.?1994, 44, 774–780, doi:10.1099/00207713-44-4-774.
[2]  Radax, C.; Gruber, G.; Stan-Lotter, H. Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles?2001, 5, 221–228, doi:10.1007/s007920100192.
[3]  Stan-Lotter, H.; McGenity, T.J.; Legat, A.; Denner, E.B.M.; Glaser, K.; Stetter, K.O.; Wanner, G. Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiol.?1999, 145, 3565–3574.
[4]  Schoop, G. Halococcus litoralis, ein obligat halophiler Farbstoffbildner. Dtsch Tier?rztl Wochens?1935, 43, 817–820.
[5]  Oren, A.; Arahal, D.R.; Ventosa, A. Emended descriptions of genera of the family Halobacteriaceae. Int. J. Syst. Evol. Microbiol.?2009, 59, 637–642, doi:10.1099/ijs.0.008904-0.
[6]  Kocur, M.; Hodgkiss, W. Taxonomic status of the genus Halococcus Schoop. Int. J. Syst. Bacteriol.?1973, 23, 151–156, doi:10.1099/00207713-23-2-151.
[7]  Montero, C.G.; Ventosa, A.; Rodriguez-Valera, F.; Kates, M.; Moldoveanu, N.; Ruiz-Berraquero, F. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol.?1989, 12, 167–171, doi:10.1016/S0723-2020(89)80010-4.
[8]  Stan-Lotter, H.; Pfaffenhuemer, M.; Legat, A.; Busse, H.-J.; Radax, C.; Gruber, C. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int. J. Syst. Evol. Microbiol.?2002, 52, 1807–1814, doi:10.1099/ijs.0.02278-0.
[9]  Goh, F.; Leuko, S.; Allen, M.A.; Bowman, J.P.; Kamekura, M.; Neilan, B.A.; Burns, B.P. Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int. J. Syst. Evol. Microbiol.?2006, 56, 1323–1329, doi:10.1099/ijs.0.64180-0.
[10]  Wang, Q.-F.; Li, W.; Yang, H.; Liu, Y.-L.; Cao, H.-H.; Dornmayr-Pfaffenhuemer, M.; Stan-Lotter, H.; Guo, G.-Q. Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int. J. Syst. Evol. Microbiol.?2007, 57, 600–604, doi:10.1099/ijs.0.64673-0.
[11]  Namwong, S.; Tanasupawat, S.; Visessanguan, W.; Kudo, T.; Itoh, T. Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int. J. Syst. Evol. Microbiol.?2007, 57, 2199–2203, doi:10.1099/ijs.0.65218-0.
[12]  Wright, A.-D.G. Phylogenetic relationships within the order Halobacteriales inferred from16S rRNA gene sequences. Int. J. Syst. Evol. Microbiol.?2006, 56, 1223–1227, doi:10.1099/ijs.0.63776-0.
[13]  Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol.?1987, 4, 406–425. 3447015
[14]  Kumar, S. Molecular clocks: four decades of evolution. Nat. Rev. Genetics?2005, 6, 654–662, doi:10.1038/nrg1659.
[15]  Dennis, P.P.; Shimmin, L.C. Evolutionary divergence and salinity-mediated selection in halophilic Archaea. Microb. Mol. Biol. Rev.?1997, 61, 90–104.
[16]  Gogarten, J.P.; Townsend, J.P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol.?2005, 3, 679–687, doi:10.1038/nrmicro1204.
[17]  McGenity, T.J.; Gemmell, R.T.; Grant, W.D.; Stan-Lotter, H. Origins of halophilic microorganisms in ancient salt deposits. Environ. Microbiol.?2000, 2, 243–250, doi:10.1046/j.1462-2920.2000.00105.x.
[18]  Schubert, B.A.; Lowenstein, T.K.; Timofeeff, M.N.; Parker, M.A. Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ. Microbiol.?2010, 12, 440–454, doi:10.1111/j.1462-2920.2009.02086.x.
[19]  Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Gerbl, F.W.; Holzinger, A.; Gr?sbacher, M.; Briza, P.; Erler, A.; Gruber, C.; Pl?tzer, K.; Stan-Lotter, H. Spherical particles of halophilic Archaea correlate with exposure to low water activity - implications for microbial survival in fluid inclusions of ancient halite. Geobiology?2012, 10, 424–433, doi:10.1111/j.1472-4669.2012.00337.x.
[20]  Schubert, B.A.; Lowenstein, T.K.; Timofeeff, M.N. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology?2009, 9, 467–482, doi:10.1089/ast.2008.0282.
[21]  Norton, C.F.; Grant, W.D. Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol.?1988, 134, 1365–1373.
[22]  Mormile, M.R.; Biesen, M.A.; Gutierrez, M.C.; Ventosa, A.; Pavlovich, J.B.; Onstott, T.C.; Fredrickson, J.K. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ. Microbiol.?2003, 5, 1094–1102, doi:10.1046/j.1462-2920.2003.00509.x.
[23]  Fendrihan, S.; Legat, A.; Pfaffenhuemer, M.; Gruber, C.; Weidler, G.; Gerbl, F.; Stan-Lotter, H. Extremely halophilic archaea and the issue of long-term microbial survival. Rev. Environ. Sci. Biotech.?2006, 5, 203–218, doi:10.1007/s11157-006-0007-y.
[24]  Gramain, A.; Chong Díaz, G.C.; Demergasso, C.; Lowenstein, T.K.; McGenity, T.J. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ. Microbiol.?2011, 13, 2105–2121, doi:10.1111/j.1462-2920.2011.02435.x.
[25]  Burns, B.P.; Gudhka, R.K.; Neilan, B.A. Genome sequence of the halophilic archaeon Halococcus hamelinensis. J. Bacteriol.?2012, 194, 2100–2101, doi:10.1128/JB.06599-11.
[26]  Grant, W.D.; Genus, I.V. Halococcus Schoop 1935a, 817AL. In Bergey's Manual of Systematic Bacteriology, 2nd ed.; Boone, D.R., Castenholz, R.W., Garrity, G.M., Eds.; Springer-Verlag: New York, NY, USA, 2001; Volume 1, pp. 311–314.
[27]  Stackebrandt, E.; Goebel, B.M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol.?1994, 44, 846–849, doi:10.1099/00207713-44-4-846.
[28]  Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; Starr, M.P.; Trüper, H.G. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol.?1987, 37, 463–464, doi:10.1099/00207713-37-4-463.
[29]  Zharkov, M.A. History of Paleozoic Salt Accumulation; Springer Verlag: Berlin, Germany, 1981.
[30]  Stan-Lotter, H.; Radax, C.; McGenity, T.J.; Legat, A.; Pfaffenhuemer, M.; Wieland, H.; Gruber, C.; Denner, E.B.M. From intraterrestrials to extraterrestrials - viable haloarchaea in ancient salt deposits. In Halophilic Microorganisms; Ventosa, A., Ed.; Springer Verlag: New York, NY, USA, 2004; pp. 89–102.
[31]  Kocur, M.; Smid, B.; Martinec, T. The fine structure of extreme halophilic cocci. Microbios?1972, 5, 101–107. 4131823
[32]  Sumper, M.; Berg, E.; Mengele, R.; Strobel, I. Primary structure and glycosylation of the S-Layer protein of Haloferax volcanii. J. Bacteriol.?1990, 172, 7111–7118. 2123862
[33]  Schleifer, K.H.; Steber, J.; Mayer, H. Chemical composition and structure of the cell wall of Halococcus morrhuae. Zbl. Bakt. Hyg. 1. Abt. Orig.?1982, 3, 171–178.
[34]  Niemetz, R.; K?rcher, U.; Kandler, O.; Tindall, B.J.; K?nig, H. The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur. J. Biochem.?1997, 249, 905–911, doi:10.1111/j.1432-1033.1997.00905.x. 9395342
[35]  Kandler, O.; K?nig, H. Cell envelopes of Archaebacteria. In The Bacteria vol. VII; Woese, C.R., Wolfe, R.S., Eds.; Academic Press: New York, NY, USA, 1985; pp. 413–457.
[36]  K?nig, H.; Rachel, R.; Claus, H. Proteinaceous surface layers of Archaea: ultra-structure and biochemistry. In Archaea. Molecular Cell Biology; Cavicchioli, R., Ed.; ASM Press: Washington, DC, USA, 2007; pp. 315–340.
[37]  Claus, H.; Akca, E.; Debaerdemaeker, T.; Evrard, C.; Deqlercq, J.P.; Harris, J.R.; Schlott, B.; K?nig, H. Molecular organization of selected prokaryoticS-layer proteins. Can. J. Microbiol.?2005, 51, 731–743, doi:10.1139/w05-093.
[38]  K?rcher, U.; Schr?der, H.; Haslinger, E.; Allmeier, G.; Schreiner, R.; Wieland, F.; Haselbeck, A.; K?nig, H. Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J. Biol. Chem.?1993, 268, 26821–26826. 8262914
[39]  Brown, A.D.; Cho, K.Y. The walls of extremely halophilic cocci: Gram-positive bacteria lacking muramic acid. J. Gen. Microbiol.?1970, 62, 267–270, doi:10.1099/00221287-62-2-267. 5493598
[40]  Reistad, R. Cell wall of an extremely halophilic coccus. Investigation of ninhydrin-positive compounds. Arch. Microbiol.?1972, 82, 24–30.
[41]  Steber, J.; Schleifer, K.H. N-Glycyl-glucosamine, a novel constituent in the cell wall of Halococcus morrhuae. Arch. Microbiol.?1979, 123, 209–212, doi:10.1007/BF00446822.
[42]  Steber, J. Untersuchungen zur chemischen Zusammensetzung und Struktur der Zellwand von Halococcus morrhuae. PhD thesis, Technical University, Munich, Germany, 1976.
[43]  Koch, A.L. What size should a bacterium be? A question of scale. Annu. Rev. Microbiol.?1996, 50, 317–334, doi:10.1146/annurev.micro.50.1.317.
[44]  Koch, A.L. Were Gram-positive rods the first bacteria? Trends Microbiol.?2003, 11, 166–170, doi:10.1016/S0966-842X(03)00063-5.
[45]  Rehm, H.A. Biogenesis of microbial polyhydroxyalkanoate granules: A platform technology for the production of tailor-made bioparticles. Curr. Issues Mol. Biol.?2007, 9, 41–62. 17263145
[46]  Fernandez-Castillo, R.; Rodriguez-Valera, F.; Gonzales-Ramos, J.; Ruiz-Berraquero, F. Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol.?1986, 51, 214–216. 16346972
[47]  Quillaguamán, J.; Guzmán, H.; Van-Thuoc, D.; Hatti-Kaul, R. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl. Microbiol. Biotechnol.?2010, 85, 1687–1696, doi:10.1007/s00253-009-2397-6.
[48]  Legat, A.; Gruber, C.; Zangger, K.; Wanner, G.; Stan-Lotter, H. Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl. Microbiol. Biotechn.?2010, 87, 1119–1127, doi:10.1007/s00253-010-2611-6.
[49]  Baliga, N.S.; Bonneau, R.; Facciotti, M.T.; Pan, M.; Glusman, G.; Deutsch, E.W.; Shannon, P.; Chiu, Y.; Weng, R.S.; Gan, R.R.; Hung, P.; Date, S.V.; Marcotte, E.; Hood, L.; Ng, W.V. Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Res.?2004, 14, 2221–2234, doi:10.1101/gr.2700304.
[50]  Bolhuis, H.; Palm, P.; Wende, A.; Falb, M.; Rampp, M.; Rodriguez-Valera, F.; Pfeiffer, F.; Oesterhelt, D. The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics?2006, 7, 169, doi:10.1186/1471-2164-7-169. 16820047
[51]  Han, J.; Lu, Q.; Zhou, L.; Zhou, J.; Xiang, H. Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl. Environ. Microbiol.?2007, 73, 6058–6065, doi:10.1128/AEM.00953-07. 17675423
[52]  Lu, Q.; Han, J.; Zhou, L.; Zhou, J.; Xiang, H. Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J. Bacteriol.?2008, 190, 4173–4180, doi:10.1128/JB.00134-08.
[53]  Kalia, V.C.; Lal, S.; Cheema, S. Insight into the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene?2007, 389, 19–26, doi:10.1016/j.gene.2006.09.010.
[54]  Altschul, S.A.; Madden, T.L.; Sch?ffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.?1997, 25, 3389–3402, doi:10.1093/nar/25.17.3389. 9254694
[55]  Muench, S.P.; Trinick, J.; Harrison, M.A. Structural divergence of the rotary ATPases. Q Rev. Biophys.?2011, 44, 311–356, doi:10.1017/S0033583510000338.
[56]  Stan-Lotter, H.; Sulzner, M.; Egelseer, E.; Norton, C.F.; Hochstein, L.I. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits. Origins Life Evol. Biosphere.?1993, 23, 53–64, doi:10.1007/BF01581990.
[57]  Hochstein, L.I.; Kristjansson, H.; Altekar, W. The purification and subunit structure of a membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum. Biochem. Biophys. Res. Commun.?1987, 147, 295–300, doi:10.1016/S0006-291X(87)80120-1.
[58]  Stan-Lotter, H.; Hochstein, L.I. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP synthase. Eur. J. Biochem.?1989, 179, 155–160, doi:10.1111/j.1432-1033.1989.tb14533.x.
[59]  Ochman, H.; Wilson, A. Evolution in bacteria: evidence for a universal rate in cellular genomes. J. Mol. Evol.?1987, 26, 74–86, doi:10.1007/BF02111283.
[60]  Park, J.S.; Vreeland, R.H.; Cho, B.C.; Lowenstein, T.K.; Timofeeff, M.N.; Rosenzweig, W.D. Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology?2009, 7, 515–523, doi:10.1111/j.1472-4669.2009.00218.x.
[61]  Mani, K.; Salgaonkar, B.B.; Braganca, J.M. Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat. Biosyst.?2012, 8, 15, doi:10.1186/2046-9063-8-15.
[62]  Yildiz, E.; Ozcan, B.; Caliskan, M. Isolation, characterization and phylogenetic analysis of halophilic Archaea from a salt mine in central Anatolia (Turkey). Polish J. Microbiol.?2012, 61, 111–117.
[63]  Gruber, C.; Legat, A.; Pfaffenhuemer, M.; Radax, C.; Weidler, G.; Busse, H.-J.; Stan-Lotter, H. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles?2004, 8, 431–439, doi:10.1007/s00792-004-0403-6.
[64]  Lillo, J.; Rodriguez-Valera, F. Effects of culture conditions on poly(? -hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol.?1990, 56, 2517–2521. 16348261
[65]  Bergmeyer, H.U. Methoden der enzymatischen Analyse; Verlag Chemie: Weinheim, Germany, 1974.
[66]  Dodgston, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J.?1962, 84, 106–110. 13886865
[67]  Chen, P.S.; Toribara, T.Y.; Warner, H. Microdetermination of phosphorus. Analyt. Chem.?1956, 28, 1756–1758, doi:10.1021/ac60119a033.
[68]  Humble, M.W.; King, A.; Phillips, I. API ZYM: A simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol.?1977, 30, 275–277, doi:10.1136/jcp.30.3.275.
[69]  Oren, A.; Ventosa, A.; Grant, W.D. Proposed minimalstandards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol.?1997, 47, 233–238, doi:10.1099/00207713-47-1-233.
[70]  Cashion, P.; Hodler-Franklin, M.A.; McCully, J.; Franklin, M. A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem.?1977, 81, 461–466, doi:10.1016/0003-2697(77)90720-5.
[71]  De Ley, J.; Cattoir, H.; Reynaerts, A. The quantitative measurement of DNA hybridisation from renaturation rates. Eur. J. Biochem.?1970, 12, 133–142, doi:10.1111/j.1432-1033.1970.tb00830.x.
[72]  Hu?, V.A.R.; Festl, H.; Schleifer, K.H. Studies on the spectrometric determination of DNA hybridisation from renaturation rates. System. Appl. Microbiol.?1983, 4, 184–192, doi:10.1016/S0723-2020(83)80048-4.
[73]  Escara, J.F.; Hutton, J.R. Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers?1980, 19, 1315–1327, doi:10.1002/bip.1980.360190708.
[74]  Jahnke, K.-D. BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J. Microbiol. Meth.?1992, 15, 61–73, doi:10.1016/0167-7012(92)90069-G.
[75]  Maidak, B.L.; Cole, J.R.; Lilburn, T.G.; Parker, C.T., Jr.; Saxman, P.R.; Farris, R.J.; Garrity, G.M.; Olsen, G.J.; Schmidt, T.M.; Tiedje, J.M. The RDP-II (Ribosomal Database Project). Nucleic Acids Res.?2001, 29, 173–174, doi:10.1093/nar/29.1.173. 11125082
[76]  Jukes, T.H.; Cantor, R.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N, Ed.; Academic Press: New York, NY, USA, 1969; Volume 3, pp. 21–132.
[77]  Kumar, S.; Dudley, J.; Nei, M.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform.?2008, 9, 299–306, doi:10.1093/bib/bbn017. 18417537
[78]  Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.?1997, 25, 4876–4882, doi:10.1093/nar/25.24.4876. 9396791

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133