全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2013 

Surface Appendages of Archaea: Structure, Function, Genetics and Assembly

DOI: 10.3390/life3010086

Keywords: archaella, archaeal flagella, archaella, type IV pili, hami, cannulae, bindosome, glycosylation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Organisms representing diverse subgroupings of the Domain Archaea are known to possess unusual surface structures. These can include ones unique to Archaea such as cannulae and hami as well as archaella (archaeal flagella) and various types of pili that superficially resemble their namesakes in Bacteria, although with significant differences. Major advances have occurred particularly in the study of archaella and pili using model organisms with recently developed advanced genetic tools. There is common use of a type IV pili-model of assembly for several archaeal surface structures including archaella, certain pili and sugar binding structures termed bindosomes. In addition, there are widespread posttranslational modifications of archaellins and pilins with N-linked glycans, with some containing novel sugars. Archaeal surface structures are involved in such diverse functions as swimming, attachment to surfaces, cell to cell contact resulting in genetic transfer, biofilm formation, and possible intercellular communication. Sometimes functions are co-dependent on other surface structures. These structures and the regulation of their assembly are important features that allow various Archaea, including thermoacidophilic, hyperthermophilic, halophilic, and anaerobic ones, to survive and thrive in the extreme environments that are commonly inhabited by members of this domain.

References

[1]  Jarrell, K.F.; Walters, A.D.; Bochiwal, C.; Borgia, J.M.; Dickinson, T.; Chong, J.P.J. Major players on the microbial stage:why archaea are important. Microbiology?2011, 157, 919–936, doi:10.1099/mic.0.047837-0.
[2]  Cavicchioli, R. Archaea-timeline of the third domain. Nat. Rev. Microbiol.?2011, 9, 51–61, doi:10.1038/nrmicro2482.
[3]  Ng, S.Y.M.; Zolghadr, B.; Driessen, A.J.M.; Albers, S.V.; Jarrell, K.F. Cell surface structures of Archaea. J. Bacteriol.?2008, 190, 6039–6047, doi:10.1128/JB.00546-08.
[4]  Albers, S.V.; Meyer, B.H. The archaeal cell envelope. Nat. Rev. Microbiol.?2011, 9, 414–426, doi:10.1038/nrmicro2576.
[5]  Pohlschroder, M.; Ghosh, A.; Tripepi, M.; Albers, S.V. Archaeal type IV pilus-like structures-evolutionarily conserved prokaryotic surface organelles. Curr. Opin. Microbiol.?2011, 14, 1–7, doi:10.1016/j.mib.2011.01.001.
[6]  Albers, S.V.; Pohlschroder, M. Diversity of archaeal type IV pilin-like structures. Extremophiles.?2009, 13, 403–410, doi:10.1007/s00792-009-0241-7.
[7]  Moissl, C.; Rachel, R.; Briegel, A.; Engelhardt, H.; Huber, R. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol. Microbiol.?2005, 56, 361–370, doi:10.1111/j.1365-2958.2005.04294.x.
[8]  Rieger, G.; Rachel, R.; Hermann, R.; Stetter, K.O. Ultrastructure of the hyperthermophilic archaeon Pyrodictium. abyssi. J. Struct. Biol.?1995, 115, 78–87, doi:10.1006/jsbi.1995.1032.
[9]  Henche, A.L.; Ghosh, A.; Yu, X.; Jeske, T.; Egelman, E.; Albers, S.V. Structure and function of the adhesive type IV pilus of Sulfolobus. acidocaldarius. Environ. Microbiol.?2012, 14, 3188–3202, doi:10.1111/j.1462-2920.2012.02898.x.
[10]  Yu, X.; Goforth, C.; Meyer, C.; Rachel, R.; Schr?der, G.F.; Egelman, E.H. Filaments from Ignicoccus hospitalis show diversity of packing in proteins containing N-terminal type IV pilin helices. J. Mol. Biol.?2012, 422, 274–281, doi:10.1016/j.jmb.2012.05.031.
[11]  Wang, Y.A.; Yu, X.; Ng, S.Y.M.; Jarrell, K.F.; Egelman, E.H. The structure of an archaeal pilus. J. Mol. Biol.?2008, 381, 456–466, doi:10.1016/j.jmb.2008.06.017.
[12]  Jarrell, K.F.; Albers, S.V. The archaellum: an old motility structure with a new name. Trends Microbiol.?2012, 20, 307–312, doi:10.1016/j.tim.2012.04.007.
[13]  Jarrell, K.F.; VanDyke, D.J.; Wu, J. Archaeal flagella and pili. In Current Research and Future Trends Pili and Flagella; Jarrell, K.F., Ed.; Caister Academic Press: Norfolk, UK, 2009; pp. 215–234.
[14]  Jarrell, K.F.; McBride, M.J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol.?2008, 6, 466–476, doi:10.1038/nrmicro1900.
[15]  Ng, S.Y.; Chaban, B.; Jarrell, K.F. Archaeal flagella, bacterial flagella and type IV pili: A comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotechnol.?2006, 11, 167–191, doi:10.1159/000094053.
[16]  Ghosh, A.; Albers, S.V. Assembly and function of the archaeal flagellum. Biochem. Soc. Trans.?2011, 39, 64–69, doi:10.1042/BST0390064.
[17]  Lassak, K.; Neiner, T.; Ghosh, A.; Klingl, A.; Wirth, R.; Albers, S. Molecular analysis of the crenarchaeal flagellum. Mol. Microbiol.?2012, 83, 110–124, doi:10.1111/j.1365-2958.2011.07916.x.
[18]  Eichler, J. Response to Jarrell and Albers: the name says it all. Trends Microbiol.?2012, 20, 512–513, doi:10.1016/j.tim.2012.08.007.
[19]  Wirth, R. Response to Jarrell and Albers: seven letters less does not say more. Trends Microbiol.?2012, 20, 511–512, doi:10.1016/j.tim.2012.07.007.
[20]  Leigh, J.A.; Albers, S.V.; Atomi, H.; Allers, T. Model organisms for genetics in the domain archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol. Rev.?2011, 35, 577–608, doi:10.1111/j.1574-6976.2011.00265.x.
[21]  Cohen-Krausz, S.; Trachtenberg, S. The flagellar filament structure of the extreme acidothermophile Sulfolobus. shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design. J. Mol. Biol.?2008, 375, 1113–1124, doi:10.1016/j.jmb.2007.10.048.
[22]  Bardy, S.L.; Jarrell, K.F. FlaK of the archaeon Methanococcus. maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett.?2002, 208, 53–59, doi:10.1111/j.1574-6968.2002.tb11060.x.
[23]  Bardy, S.L.; Jarrell, K.F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus. voltae. Mol. Microbiol.?2003, 50, 1339–1347, doi:10.1046/j.1365-2958.2003.03758.x.
[24]  Szabo, Z.; Stahl, A.O.; Albers, S.V.; Kissinger, J.C.; Driessen, A.J.M.; Pohlschroder, M. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol.?2007, 189, 772–778, doi:10.1128/JB.01547-06.
[25]  Albers, S.V.; Szabo, Z.; Driessen, A.J.M. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol.?2003, 185, 3918–3925, doi:10.1128/JB.185.13.3918-3925.2003. 12813086
[26]  Tripepi, M.; Imam, S.; Pohlschroder, M. Haloferax. volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol.?2010, 192, 3093–3102, doi:10.1128/JB.00133-10.
[27]  Jarrell, K.F.; Jones, G.M.; Kandiba, L.; Nair, D.B.; Eichler, J. S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea.?2010, doi:10.1155/2010/612948.
[28]  Ng, S.Y.M.; Wu, J.; Nair, D.B.; Logan, S.M.; Robotham, A.; Tessier, L.; Kelly, J.F.; Uchida, K.; Aizawa, S.; Jarrell, K.F. Genetic and mass spectrometry analysis of the unusual type IV-like pili of the archaeon Methanococcus. maripaludis. J. Bacteriol.?2011, 193, 804–814, doi:10.1128/JB.00822-10. 21075925
[29]  Kelly, J.; Logan, S.M.; Jarrell, K.F.; Vandyke, D.J.; Vinogradov, E. A novel N-linked flagellar glycan from Methanococcus. maripaludis. Carbohydr. Res.?2009, 344, 648–653, doi:10.1016/j.carres.2009.01.006.
[30]  Tripepi, M.; You, J.; Temel, S.; ?nder, ?.; Brisson, D.; Pohlschr?der, M. N-glycosylation of Haloferax. volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J. Bacteriol.?2012, 194, 4876–4887, doi:10.1128/JB.00731-12.
[31]  Jarrell, K.F.; Stark, M.; Nair, D.B.; Chong, J.P.J. Flagella and pili are both necessary for efficient attachment of Methanococcus. maripaludis to surfaces. FEMS Microbiol. Lett.?2011, 319, 44–50, doi:10.1111/j.1574-6968.2011.02264.x.
[32]  Henche, A.L.; Koerdt, A.; Ghosh, A.; Albers, S.V. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ. Microbiol.?2012, 14, 779–793, doi:10.1111/j.1462-2920.2011.02638.x. 22059595
[33]  Koerdt, A.; G?deke, J.; Berger, J.; Thormann, K.M.; Albers, S.V. Crenarchaeal biofilm formation under extreme conditions. PloS One?2010, doi:10.1371/journal.pone.0014104.
[34]  Ajon, M.; Fr?ls, S.; van Wolferen, M.; Stoecker, K.; Teichmann, D.; Driessen, A.J.; Grogan, D.W.; Albers, S.V.; Schleper, C. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol.?2011, 82, 807–817, doi:10.1111/j.1365-2958.2011.07861.x. 21999488
[35]  Muller, D.W.; Meyer, C.; Gurster, S.; Kuper, U.; Huber, H.; Rachel, R.; Wanner, G.; Wirth, R.; Bellack, A. The Iho670 fibers of Ignicoccus. hospitalis: A new type of archaeal cell surface appendage. J. Bacteriol.?2009, 191, 6465–6468, doi:10.1128/JB.00858-09.
[36]  Frols, S.; Ajon, M.; Wagner, M.; Teichmann, D.; Zolghadr, B.; Folea, M.; Boekema, E.J.; Driessen, A.J.; Schleper, C.; Albers, S.V. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus. solfataricus is mediated by pili formation. Mol. Microbiol.?2008, 70, 938–952, doi:10.1111/j.1365-2958.2008.06459.x.
[37]  Schopf, S.; Wanner, G.; Rachel, R.; Wirth, R. An archaeal bi-species biofilm formed by Pyrococcus. furiosus and Methanopyrus. kandleri. Arch. Microbiol.?2008, 190, 371–377, doi:10.1007/s00203-008-0371-9.
[38]  Weiner, A.; Schopf, S.; Wanner, G.; Probst, A.; Wirth, R. Positive, neutral and negative interactions in cocultures between Pyrococcus. furiosus and different methanogenic Archaea. Microb. Insights?2012, 5, 1–10.
[39]  Reimann, J.; Lassak, K.; Khadouma, S.; Ettema, T.J.; Yang, N.; Driessen, A.J.; Klingl, A.; Albers, S.V. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus. acidocaldarius. Mol. Microbiol.?2012, 86, 24–36, doi:10.1111/j.1365-2958.2012.08186.x.
[40]  Trachtenberg, S.; Cohen-Krausz, S. The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J. Mol. Microbiol. Biotechnol.?2006, 11, 208–220, doi:10.1159/000094055. 16983196
[41]  Faguy, D.M.; Jarrell, K.F.; Kuzio, J.; Kalmokoff, M.L. Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol.?1994, 40, 67–71, doi:10.1139/m94-011. 7908603
[42]  Jarrell, K.F.; Bayley, D.P.; Kostyukova, A.S. The archaeal flagellum: a unique motility structure. J. Bacteriol.?1996, 178, 5057–5064. 8752319
[43]  Zolghadr, B.; Weber, S.; Szabo, Z.; Driessen, A.J.M.; Albers, S.V. Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus. solfataricus. Mol. Microbiol.?2007, 64, 795–806, doi:10.1111/j.1365-2958.2007.05697.x.
[44]  Strom, M.S.; Nunn, D.N.; Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA?1993, 90, 2404–2408, doi:10.1073/pnas.90.6.2404.
[45]  Bardy, S.L.; Eichler, J.; Jarrell, K.F. Archaeal signal peptides—A comparative survey at the genome level. Protein Sci.?2003, 12, 1833–1843, doi:10.1110/ps.03148703. 12930983
[46]  Bayley, D.P.; Jarrell, K.F. Further evidence to suggest that archaeal flagella are related to bacterial type IV pili. J. Mol. Evol.?1998, 46, 370–373. 9493362
[47]  Peabody, C.R.; Chung, Y.J.; Yen, M.R.; Vidal-Ingigliardi, D.; Pugsley, A.P.; Saier, M.H., Jr. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology?2003, 149, 3051–3072, doi:10.1099/mic.0.26364-0. 14600218
[48]  Faguy, D.M.; Koval, S.F.; Jarrell, K.F. Physical characterization of the flagella and flagellins from Methanospirillum. hungatei. J. Bacteriol.?1994, 176, 7491–7498. 8002572
[49]  Thomas, N.A.; Bardy, S.L.; Jarrell, K.F. The archaeal flagellum: A different kind of prokaryotic motility structure. FEMS Microbiol. Rev.?2001, 25, 147–174, doi:10.1111/j.1574-6976.2001.tb00575.x. 11250034
[50]  Pyatibratov, M.G.; Beznosov, S.N.; Rachel, R.; Tiktopulo, E.I.; Surin, A.K.; Syutkin, A.S.; Fedorov, O.V. Alternative flagellar filament types in the haloarchaeon Haloarcula. marismortui. Can. J. Microbiol.?2008, 54, 835–844, doi:10.1139/W08-076.
[51]  Bardy, S.L.; Ng, S.Y.; Jarrell, K.F. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol.?2004, 7, 41–51, doi:10.1159/000077868. 15170402
[52]  Chaban, B.; Ng, S.Y.; Kanbe, M.; Saltzman, I.; Nimmo, G.; Aizawa, S.I.; Jarrell, K.F. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus. maripaludis. Mol. Microbiol.?2007, 66, 596–609, doi:10.1111/j.1365-2958.2007.05913.x.
[53]  Patenge, N.; Berendes, A.; Engelhardt, H.; Schuster, S.C.; Oesterhelt, D. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium. salinarum. Mol. Microbiol.?2001, 41, 653–663, doi:10.1046/j.1365-2958.2001.02542.x.
[54]  Chaban, B.; Voisin, S.; Kelly, J.; Logan, S.M.; Jarrell, K.F. Identification of genes involved in the biosynthesis and attachment of Methanococcus. voltae N-linked glycans: Insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol.?2006, 61, 259–268, doi:10.1111/j.1365-2958.2006.05226.x.
[55]  Vandyke, D.J.; Wu, J.; Logan, S.M.; Kelly, J.F.; Mizuno, S.; Aizawa, S.I.; Jarrell, K.F. Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus. maripaludis. Mol. Microbiol.?2009, 72, 633–644, doi:10.1111/j.1365-2958.2009.06671.x.
[56]  Jarrell, K.F.; Jones, G.M.; Nair, D.B. Role of N-linked glycosylation in cell surface structures of Archaea with a focus on flagella and S layers. Int. J. Microbiol.?2010, doi:10.1155/2010/470138.
[57]  Gerl, L.; Deutzmann, R.; Sumper, M. Halobacterial flagellins are encoded by a multigene family. Identification of all five gene products. FEBS Lett.?1989, 244, 137–140, doi:10.1016/0014-5793(89)81179-2.
[58]  Gerl, L.; Sumper, M. Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes. J. Biol. Chem.?1988, 263, 13246–13251. 3417656
[59]  Tarasov, V.Y.; Pyatibratov, M.G.; Tang, S.L.; Dyall-Smith, M.; Fedorov, O.V. Role of flagellins from A and B loci in flagella formation of Halobacterium. salinarum. Mol. Microbiol.?2000, 35, 69–78, doi:10.1046/j.1365-2958.2000.01677.x.
[60]  Kalmokoff, M.L.; Jarrell, K.F.; Koval, S.F. Isolation of flagella from the archaebacterium Methanococcus. voltae by phase separation with Triton X-114. J. Bacteriol.?1988, 170, 1752–1758. 3127380
[61]  Bardy, S.L.; Mori, T.; Komoriya, K.; Aizawa, S.; Jarrell, K.F. Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus. voltae. J. Bacteriol.?2002, 184, 5223–5233, doi:10.1128/JB.184.19.5223-5233.2002.
[62]  Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol.?2003, 57, 77–100, doi:10.1146/annurev.micro.57.030502.090832. 12730325
[63]  Aizawa, S.I. Flagellar assembly in Salmonella typhimurium. Mol. Microbiol.?1996, 19, 1–5, doi:10.1046/j.1365-2958.1996.344874.x. 8821931
[64]  Beznosov, S.N.; Pyatibratov, M.G.; Fedorov, O.V. On the multicomponent nature of Halobacterium. salinarum flagella. Microbiology Russ.?2007, 76, 435–441.
[65]  Syutkin, A.S.; Pyatibratov, M.G.; Beznosov, S.N.; Fedorov, O.V. Various mechanisms of flagella helicity formation in Halobacteria. Microbiology Russ.?2012, 81, 573–581.
[66]  Schlesner, M.; Miller, A.; Streif, S.; Staudinger, W.F.; Muller, J.; Scheffer, B.; Siedler, F.; Oesterhelt, D. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. BMC Microbiol.?2009, 9, 56, doi:10.1186/1471-2180-9-56. 19291314
[67]  Mukhopadhyay, B.; Johnson, E.F.; Wolfe, R.S. A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus. jannaschii. Proc. Natl. Acad. Sci. USA?2000, 97, 11522–11527, doi:10.1073/pnas.97.21.11522.
[68]  Thomas, N.A.; Jarrell, K.F. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. J. Bacteriol.?2001, 183, 7154–7164, doi:10.1128/JB.183.24.7154-7164.2001. 11717274
[69]  Banerjee, A.; Ghosh, A.; Mills, D.J.; Kahnt, J.; Vonck, J.; Albers, S.V. FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. J. Biol. Chem.?2012, 287, 43322–43330, doi:10.1074/jbc.M112.414383. 23129770
[70]  Ghosh, A.; Hartung, S.; van der Does, C.; Tainer, J.A.; Albers, S.V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem. J.?2011, 437, 43–52, doi:10.1042/BJ20110410. 21506936
[71]  Kalmokoff, M.L.; Jarrell, K.F. Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus. voltae. J. Bacteriol.?1991, 173, 7113–7125. 1718944
[72]  Szabo, Z.; Albers, S.V.; Driessen, A.J.M. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus. solfataricus. J. Bacteriol.?2006, 188, 1437–1443, doi:10.1128/JB.188.4.1437-1443.2006.
[73]  Hu, J.; Xue, Y.; Lee, S.; Ha, Y. The crystal structure of GxGD membrane protease FlaK. Nature?2011, 475, 528–531, doi:10.1038/nature10218. 21765428
[74]  Thomas, N.A.; Chao, E.D.; Jarrell, K.F. Identification of amino acids in the leader peptide of Methanococcus. voltae preflagellin that are important in posttranslational processing. Arch. Microbiol.?2001, 175, 263–269, doi:10.1007/s002030100254.
[75]  Ng, S.Y.; VanDyke, D.J.; Chaban, B.; Wu, J.; Nosaka, Y.; Aizawa, S.; Jarrell, K.F. Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD. J. Bacteriol.?2009, 191, 6732–6740, doi:10.1128/JB.00673-09. 19717585
[76]  Sumper, M. Halobacterial glycoprotein biosynthesis. Biochim. Biophys. Acta.?1987, 906, 69–79, doi:10.1016/0304-4157(87)90005-0. 2882779
[77]  Voisin, S.; Houliston, R.S.; Kelly, J.; Brisson, J.R.; Watson, D.; Bardy, S.L.; Jarrell, K.F.; Logan, S.M. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus. voltae. J. Biol. Chem.?2005, 280, 16586–16593, doi:10.1074/jbc.M500329200. 15723834
[78]  Chaban, B.; Logan, S.M.; Kelly, J.F.; Jarrell, K.F. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus. voltae. J. Bacteriol.?2009, 191, 187–195, doi:10.1128/JB.00885-08.
[79]  Shams-Eldin, H.; Chaban, B.; Niehus, S.; Schwarz, R.T.; Jarrell, K.F. Identification of the archaeal alg7 gene homolog encoding N-acetylglucosamine-1-phosphate transferase of the N-linked glycosylation system by cross-domain complementation in Saccharomyces. cerevisiae. J. Bacteriol.?2008, 190, 2217–2220, doi:10.1128/JB.01778-07.
[80]  Namboori, S.C.; Graham, D.E. Acetamido sugar biosynthesis in the Euryarchaea. J. Bacteriol.?2008, 190, 2987–2996, doi:10.1128/JB.01970-07. 18263721
[81]  Jones, G.M.; Wu, J.; Ding, Y.; Uchida, K.; Aizawa, S.; Robotham, A.; Logan, S.M.; Kelly, J.; Jarrell, K.F. Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus. maripaludis. J. Bacteriol.?2012, 194, 2693–2702, doi:10.1128/JB.06686-11. 22408155
[82]  VanDyke, D.J.; Wu, J.; Ng, S.Y.; Kanbe, M.; Chaban, B.; Aizawa, S.I.; Jarrell, K.F. Identification of putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus. maripaludis. J. Bacteriol.?2008, 190, 5300–5307, doi:10.1128/JB.00474-08. 18539748
[83]  Calo, D.; Guan, Z.; Eichler, J. Glyco-engineering in Archaea: differential N-glycosylation of the S-layer glycoprotein in a transformed Haloferax. volcanii strain. Microb. Biotechnol.?2011, 4, 461–470, doi:10.1111/j.1751-7915.2011.00250.x.
[84]  Calo, D.; Kaminski, L.; Eichler, J. Protein glycosylation in Archaea: Sweet and Extreme. Glycobiology.?2010, 20, 1065–1076, doi:10.1093/glycob/cwq055. 20371512
[85]  Eichler, J.; Maupin-Furlow, J. Post-translation modification in Archaea: Lessons from Haloferax. volcanii and other haloarchaea. FEMS Microbiol. Rev.?2012, doi:10.1111/1574-6976.12012.
[86]  Abu-Qarn, M.; Yurist-Doutsch, S.; Giordano, A.; Trauner, A.; Morris, H.R.; Hitchen, P.; Medalia, O.; Dell, A.; Eichler, J. Haloferax. volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J. Mol. Biol.?2007, 374, 1224–1236, doi:10.1016/j.jmb.2007.10.042.
[87]  Hendrickson, E.L.; Liu, Y.; Rosas-Sandoval, G.; Porat, I.; Soll, D.; Whitman, W.B.; Leigh, J.A. Global responses of Methanococcus. maripaludis to specific nutrient limitations and growth rate. J. Bacteriol.?2008, 190, 2198–2205, doi:10.1128/JB.01805-07.
[88]  Xia, Q.; Wang, T.; Hendrickson, E.L.; Lie, T.J.; Hackett, M.; Leigh, J.A. Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus. maripaludis. BMC Microbiol.?2009, 9, 149, doi:10.1186/1471-2180-9-149.
[89]  Duan, X.; He, Z.G. Characterization of the specific interaction between archael FHA domain-containing protein and the promoter of a flagella-like gene-cluster and its regulation by phosphorylation. Biochem. Biophys. Res. Commun.?2011, 407, 242–247, doi:10.1016/j.bbrc.2011.03.011. 21382340
[90]  Wurtzel, O.; Sapra, R.; Chen, F.; Zhu, Y.; Simmons, B.A.; Sorek, R. A single-base resolution map of an archaeal transcriptome. Genome Res.?2010, 20, 133–141, doi:10.1101/gr.100396.109. 19884261
[91]  Cohen-Krausz, S.; Trachtenberg, S. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium. salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J. Mol. Biol.?2002, 321, 383–395, doi:10.1016/S0022-2836(02)00616-2.
[92]  Trachtenberg, S.; Galkin, V.E.; Egelman, E.H. Refining the structure of the Halobacterium. salinarum flagellar filament using the iterative helical real space reconstruction method: Insights into polymorphism. J. Mol. Biol.?2005, 346, 665–676, doi:10.1016/j.jmb.2004.12.010.
[93]  Kalmokoff, M.L.; Karnauchow, T.M.; Jarrell, K.F. Conserved N-terminal sequences in the flagellins of archaebacteria. Biochem. Biophys. Res. Commun.?1990, 167, 154–160, doi:10.1016/0006-291X(90)91744-D.
[94]  Jarrell, K.F.; Bayley, D.P.; Florian, V.; Klein, A. Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus. voltae. Mol. Microbiol.?1996, 20, 657–666, doi:10.1046/j.1365-2958.1996.5371058.x. 8736544
[95]  Marwan, W.; Alam, M.; Oesterhelt, D. Rotation and switching of the flagellar motor assembly in Halobacterium. halobium. J. Bacteriol.?1991, 173, 1971–1977. 2002000
[96]  Welch, M.; Oosawa, K.; Aizawa, S.; Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. PNAS?1993, 90, 8787–8791, doi:10.1073/pnas.90.19.8787. 8415608
[97]  Rudolph, J.; Nordmann, B.; Storch, K.F.; Gruenberg, H.; Rodewald, K.; Oesterhelt, D. A family of halobacterial transducer proteins. FEMS Microbiol. Lett.?1996, 139, 161–168, doi:10.1016/0378-1097(96)00136-X. 8674984
[98]  Rudolph, J.; Oesterhelt, D. Deletion analysis of the che operon in the archaeon Halobacterium. salinarium. J. Mol. Biol.?1996, 258, 548–554, doi:10.1006/jmbi.1996.0267.
[99]  Jarrell, K.F.; Ng, S.Y.; Chaban, B. Flagellation and chemotaxis. Cavicchioli, R., Ed.; Archaea: molecular and cellular biology, 2007; pp. 385–410. ASM Press: Washington, DC, USA.
[100]  del Rosario, R.C.; Diener, F.; Diener, M.; Oesterhelt, D. The steady-state phase distribution of the motor switch complex model of Halobacterium. salinarum. Math. Biosci.?2009, 222, 117–126, doi:10.1016/j.mbs.2009.10.002.
[101]  Herzog, B.; Wirth, R. Swimming behavior of selected species of Archaea. Appl. Environ. Microbiol.?2012, 78, 1670–1674, doi:10.1128/AEM.06723-11. 22247169
[102]  Nather, D.J.; Rachel, R.; Wanner, G.; Wirth, R. Flagella of Pyrococcus. furiosus: Multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J. Bacteriol.?2006, 188, 6915–6923, doi:10.1128/JB.00527-06.
[103]  Bellack, A.; Huber, H.; Rachel, R.; Wanner, G.; Wirth, R. Methanocaldococcus. villosus sp. nov., a heavily flagellated archaeon adhering to surfaces and forming cell-cell contacts. Int. J. Syst. Evol. Microbiol.?2011, 61, 1239–1245, doi:10.1099/ijs.0.023663-0.
[104]  Shimoyama, T.; Kato, S.; Ishii, S.; Watanabe, K. Flagellum mediates symbiosis. Science?2009, 323, 1574, doi:10.1126/science.1170086. 19299611
[105]  Zolghadr, B.; Klingl, A.; Koerdt, A.; Driessen, A.J.; Rachel, R.; Albers, S.V. Appendage-mediated surface adherence of Sulfolobus. solfataricus. J. Bacteriol.?2010, 192, 104–110, doi:10.1128/JB.01061-09.
[106]  Weiss, R.L. Attachment of bacteria to sulfur in extreme environments. J. Gen. Microbiol.?1973, 77, 501–507, doi:10.1099/00221287-77-2-501.
[107]  Doddema, H.J.; Derksen, J.W.M.; Vogels, G.D. Fimbriae and flagella of methanogenic bacteria. FEMS Microbiol. Lett.?1979, 5, 135–138, doi:10.1111/j.1574-6968.1979.tb03264.x.
[108]  Burrows, L.L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol.?2012, 66, 493–520, doi:10.1146/annurev-micro-092611-150055.
[109]  Pelicic, V. Type IV pili: e pluribus unum? Mol. Microbiol.?2008, 68, 827–837, doi:10.1111/j.1365-2958.2008.06197.x.
[110]  Thoma, C.; Frank, M.; Rachel, R.; Schmid, S.; Nather, D.; Wanner, G.; Wirth, R. The Mth60-fimbriae of Methanothermobacter. thermoautotrophicus are functional adhesins. Environ. Microbiol.?2008, 10, 2785–2795, doi:10.1111/j.1462-2920.2008.01698.x.
[111]  Wirth, R.; Bellack, A.; Bertl, M.; Bilek, Y.; Heimerl, T.; Herzog, B.; Leisner, M.; Probst, A.; Rachel, R.; Sarbu, C.; Schopf, S.; Wanner, G. The mode of cell wall growth in selected archaea is similar to the general mode of cell wall growth in bacteria as revealed by fluorescent dye analysis. Appl. Environ. Microbiol.?2011, 77, 1556–1562, doi:10.1128/AEM.02423-10. 21169435
[112]  Nakamura, K.; Takahashi, A.; Mori, C.; Tamaki, H.; Mochimaru, H.; Nakamura, K.; Takamizawa, K.; Kamagata, Y. Methanothermobacter. tenebrarum sp. nov., a hydrogenotrophic thermophilic methanogen isolated from gas-associated formation water of a natural gas field in Japan. Int. J. Syst. Evol. Microbiol.?2012, doi:10.1099/ijs.0.041681-0.
[113]  Kachlany, S.C.; Planet, P.J.; DeSalle, R.; Fine, D.H.; Figurski, D.H. Genes for tight adherence of Actinobacillus. actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol.?2001, 9, 429–437, doi:10.1016/S0966-842X(01)02161-8.
[114]  Vassart, A.; van Wolferen, M.; Orell, A.; Hong, Y.; Peeters, E.; Albers, S.V.; Charlier, D. Sa-Lrp from Sulfolobus. acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiology Open?2012, doi:10.1002/mbo3.58.
[115]  Frols, S.; Gordon, P.M.; Panlilio, M.A.; Duggin, I.G.; Bell, S.D.; Sensen, C.W.; Schleper, C. Response of the hyperthermophilic archaeon Sulfolobus. solfataricus to UV damage. J. Bacteriol.?2007, 189, 8708–8718, doi:10.1128/JB.01016-07.
[116]  Huber, H.; Küper, U.; Daxer, S.; Rachel, R. The unusual cell biology of the hyperthermophilic Crenarchaeon Ignicoccus. hospitalis. Antonie. van Leeuwenhoek?2012, 102, 203–219, doi:10.1007/s10482-012-9748-5.
[117]  Giannone, R.J.; Huber, H.; Karpinets, T.; Heimerl, T.; Küper, U.; Rachel, R.; Keller, M.; Hettich, R.L.; Podar, M. Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum. equitans—Ignicoccus. hospitalis relationship. PloS One?2011, doi:10.1371/journal.pone.0022942.
[118]  Magidovich, H.; Eichler, J. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol. Lett.?2009, 300, 122–130, doi:10.1111/j.1574-6968.2009.01775.x.
[119]  Nickell, S.; Hegerl, R.; Baumeister, W.; Rachel, R. Pyrodictium. cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol.?2003, 141, 34–42, doi:10.1016/S1047-8477(02)00581-6.
[120]  Barton, N.R.; O'Donoghue, E.; Short, R.; Frey, G.; Weiner, D.; Robertson, D.E.; Briggs, S.; Zorner, P. Chimeric cannulae proteins, nucleic acids encoding them and methods for making and using them. International Patent Applic. WO 2005/094543 A2, 2005.
[121]  Horn, C.; Paulmann, B.; Kerlen, G.; Junker, N.; Huber, H. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J. Bacteriol.?1999, 181, 5114–5118. 10438790
[122]  Moissl, C.; Rudolph, C.; Huber, R. Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Appl. Environ. Microbiol.?2002, 68, 933–937, doi:10.1128/AEM.68.2.933-937.2002.
[123]  Moissl-Eichinger, C.; Huber, H. Archaeal symbionts and parasites. Curr. Opin. Microbiol.?2011, 14, 364–370, doi:10.1016/j.mib.2011.04.016.
[124]  Henneberger, R.; Moissl, C.; Amann, T.; Rudolph, C.; Huber, R. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface. Appl. Environ. Microbiol.?2006, 72, 192–199, doi:10.1128/AEM.72.1.192-199.2006.
[125]  Albers, S.V.; Elferink, M.G.; Charlebois, R.L.; Sensen, C.W.; Driessen, A.J.M.; Konings, W.N. Glucose transport in the extremely thermoacidophilic Sulfolobus. solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol.?1999, 181, 4285–4291. 10400586
[126]  Elferink, M.G.; Albers, S.V.; Konings, W.N.; Driessen, A.J. Sugar transport in Sulfolobus. solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol.?2001, 39, 1494–1503, doi:10.1046/j.1365-2958.2001.02336.x.
[127]  Zolghadr, B.; Klingl, A.; Rachel, R.; Driessen, A.J.; Albers, S.V. The bindosome is a structural component of the Sulfolobus. solfataricus cell envelope. Extremophiles.?2011, 15, 235–244, doi:10.1007/s00792-010-0353-0.
[128]  Lassak, K.; Ghosh, A.; Albers, S.V. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res. Microbiol.?2012, 163, 630–644, doi:10.1016/j.resmic.2012.10.024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133