全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Life  2013 

Pavilion Lake Microbialites: Morphological, Molecular and Biochemical Evidence for a Cold-Water Transition to Colonial Aggregates

DOI: 10.3390/life3010021

Keywords: microbialite, community, stromatolite, quorum sensing, biomass, biodiversity, ecology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of microbialite structures in a freshwater, dimictic mid-latitudelake and their establishment after the last ice age about 10,000 years ago is puzzling.Freshwater calcite microbialites at Pavilion Lake, British Columbia, Canada, consist of acomplex community of microorganisms that collectively form large, ordered structuredaggregates. This distinctive assemblage of freshwater calcite microbialites was studied through standard microbial methods, morphological observations, phospholipid fatty acid(PLFA) analysis, DNA sequencing and the identification of quorum sensing molecules.Our results suggest that the microbialites may represent a transitional form from theexclusively prokaryotic colonial precursors of stromatolites to the multicellular organismicaggregates that give rise to coral reefs.

References

[1]  Lim, D.S.S.; Laval, B.E.; Salter, G.; Antoniades, D.; Forrest, A.L.; Pike, W.; Pieters, R.; Saffari, M.; Reid, D.; Schulze-Makuch, D.; Andersen, D.; McKay, C.P. Limnology of Pavilion Lake, B.C., Canada—Characterization of a microbialite forming environment. Fundam. Appl. Limnol.?2009, 173, 329–351.
[2]  Laval, B.; Cady, S.L.; Pollack, J.C.; McKay, C.P.; Bird, J.S.; Grotzinger, J.P.; Ford, D.C.; Bohm, H.R. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature?2000, 407, 626–629, doi:10.1038/35036579. 11034210
[3]  Brady, A.L.; Slater, G.F.; Omelon, C.R.; Southam, G.; Druschel, G.; Andersen, D.T.; Hawes, I.; Laval, B.; Lim, D.S.S. Photosynthetic isotope biosignatures in laminated micro-stromatolitic and non-laminated nodules associated with modern, freshwater microbialites in Pavilion Lake, B.C. Chem. Geol.?2010, 274, 56–67, doi:10.1016/j.chemgeo.2010.03.016.
[4]  Lim, D.S.S.; Brady, A.L.; Abercromby, A.F.; Andersen, D.T.; Andersen, M.; Arnold, R.R.; Bird, J.S.; Bohm, H.R.; Booth, L.; Cady, S.L.; Cardman, Z.; Chan, A.M.; Chan, O.; Chénard, C.; Cowie, B.R.; Davila, A.; Deans, M.C.; Dearing, W.; Delaney, M.; Downs, M.; Fong, T.; Forrest, A.; Gernhardt, M.L.; Gutsche, J.R.; Hadfield, C.; Hamilton, A.; Hawes, I.; Hansen, J.; Heaton, J.; Imam, Y.; Laval, B.L.; Lees, D.; Leoni, L.; Looper, C.; Love, S.; Marinova, M.M.; McCombs, D.; McKay, C.P.; Mireau, B.; Mullins, G.; Nebel, S.H.; Nuytten, P.; Pendery, R.; Pike, W.; Pointing, S.B.; Pollack, J.; Raineault, N.; Reay, M.; Reid, D.; Sallstedt, T.; Schulze-Makuch, D.; Seibert, M.; Shepard, R.; Slater, G.F.; Stonehouse, J.; Sumner, D.Y.; Suttle, C.A.; Trembanis, A.; Turse, C.; Wilhelm, M.; Wilkinson, N.; Williams, D.; Winget, D.M.; Winter, C. A historical overview of the Pavilion Lake Research Project—Analog science and exploration in an underwater environment. Geol. Soc. Am.?2011, 483, 85–116.
[5]  Lim, D.S.S.; Harwood, C.; Sumner, D.; Omelon, C.; Nienow, J.; Russell, J.; Biddle, J.; Brady, A.L.; Reid, D.; McKay, C.P. Deep water microbialites of Pavilion Lake, Canada. Geobiology?2012. submitted.
[6]  Brady, A.; Slater, G.F.; Laval, B.; Lim, D.S.S. Constraining carbon sources and growth rates of freshwater microbialites in Pavilion Lake using 14C analysis. Geobiology?2009, 7, 544–555, doi:10.1111/j.1472-4669.2009.00215.x.
[7]  White, D.C.; Bobbie, R.J.; Nichols, J.S.; Davis, W.M.; Fazio, S.D. Nonselective biochemical methods for the determination of fungal mass and community structure in estuarine detrital microflora. Botanica marina?1980, 23, 239–250.
[8]  Gregory, A.D. Microbial Insights. Technical Report for Washington State University, Pavilion Lake Project: Washington, DC, USA, 2005; pp. 1–14.
[9]  Edlund, A.; Nichols, P.D.; Roffey, R.; White, D.C. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res.?1985, 26, 982–988. 4045322
[10]  Dowling, N.J.E.; Widdel, F.; White, D.C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria. J. Gen. Microbiol.?1986, 132, 1815–1825.
[11]  Parker, J.H.; Smith, G.A.; Fredrickson, H.L.; Vestal, J.R.; White, D.C. Sensitive assay, based on hydroxy-fatty acids from lipopolysaccharide lipid A for gram negative bacteria in sediments. Appl. Environ. Microbiol.?1982, 44, 1170–1177. 6817712
[12]  Bhat, R.U.; Carlson, R.W. A new method for the analysis of amide-linked hydroxy fatty acids in lipid-A from gram-negative bacteria. Glycobiology?1992, 2, 535–539, doi:10.1093/glycob/2.6.535.
[13]  Smith, G.A.; Nickels, J.S.; Kerger, R. Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination. Can. J. Microbiol.?1986, 32, 104–111, doi:10.1139/m86-022.
[14]  Schulze-Makuch, D.; Kennedy, J.F. Microbiological and chemical characterization of hydrothermal fluids at Tortugas Mountain Geothermal Area, southern New Mexico, USA. Hydrol. J.?2000, 8, 295–309.
[15]  Schulze-Makuch, D.; Goodell, P.; Kretzschmar, T.; Kennedy, J.F. Microbial and chemical characterization of a groundwater flow system in an intermontane basin of southern New Mexico, USA. Hydrol. J.?2003, 11, 401–412.
[16]  Kenyon, C.N. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol.?1972, 109, 827–834. 4621688
[17]  Kenyon, C.N.; Rippka, R.; Stanier, R.Y. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Microbiol.?1972, 83, 216–236.
[18]  Caudales, R.; Wells, J.M.; butterfield, J.E. Cellular fatty acid composition of cyanobacteria assigned to subsection II, order Pleurocapsales. Int. J. Syst. Evol. Microbiol.?2000, 50, 1029–1034, doi:10.1099/00207713-50-3-1029. 10843042
[19]  Fang, J.; Chan, O.; Joeckel, R.M.; Huang, Y.; Wang, Y.; Bazylinski, D.A.; Moorman, T.B.; Clement, B.J.A. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Org. Geochem.?2006, 37, 912–931, doi:10.1016/j.orggeochem.2006.04.007.
[20]  Bühring, S.I.; Smittenberg, R.H.; Sachse, D.; Lipp, J.S.; Golubic, S.; Sachs, J.P.; Hinrichs, K.-U.; Summons, R.E. A hypersaline microbial mat from the Pacific Atoll Kiritimati: Insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach. Geobiology?2009, 7, 308–323, doi:10.1111/j.1472-4669.2009.00198.x.
[21]  Guckert, J.B.; Antworth, C.P.; Nichols, P.D.; White, D.C. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediment. FEMS. Microbiol. Ecol.?1985, 31, 147–158, doi:10.1111/j.1574-6968.1985.tb01143.x.
[22]  Guckert, J.B.; Hood, M.A.; White, D.C. Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol.?1986, 52, 147–158.
[23]  Heipieper, H.J.; Diefenbach, R.; Keweloh, H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol.?1992, 58, 1847–1852. 1622260
[24]  Tsitko, I.V.; Zaitsev, G.M.; Lobanok, A.G.; Salkinoja-Salonen, M.S. Effect of Aromatic Compounds on Cellular Fatty Acid Composition of Rhodococcus opacus. Appl. Environ. Microbiol.?1999, 65, 853–855. 9925629
[25]  White, D.C.; Ringelberg, D.B. Utility of the signature lipid biomarker analysis in determining the in-situ viable biomass, community structure and nutritional/physiologic status of deep subsurface microbiota. In The Microbiology of the Terrestrial Deep Subsurface; Amy, P.S., Haldeman, D.L., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 119–136.
[26]  Balkwill, D.L.; Leach, F.R.; Wilson, J.T.; McNabb, J.F.; White, D.C. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate and direct counts in subsurface aquifer sediments. Microb. Ecol.?1988, 16, 73–84, doi:10.1007/BF02097406.
[27]  Foster, J.S.; Green, S.J.; Ahrendt, S.R.; Golubic, S., Reid; Hetherington, K.L.; Bebout, L. Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J.?2009, 3, 573–587, doi:10.1038/ismej.2008.129. 19148145
[28]  Goh, F.; Allen, M.A.; Leuko, S.; Kawaguchi, T.; Decho, A.W.; Burns, B.P.; Neilan, P.A. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J.?2009, 3, 383–396, doi:10.1038/ismej.2008.114.
[29]  Visick, K.L.; Fuqua, C. Decoding microbial chatter: Cell-cell communication in bacteria. J. Bacteriol.?2005, 187, 5507–5519, doi:10.1128/JB.187.16.5507-5519.2005.
[30]  Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol.?1994, 176, 269–275. 8288518
[31]  Whitehead, N.A.; Barnard, A.M.; Slater, H.; Simpson, N.J.; Salmond, G.P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev.?2001, 25, 365–404, doi:10.1111/j.1574-6976.2001.tb00583.x.
[32]  Smith, J.N.; Ahmer, B.M. Detection of other microbial species by Salmonella: expression of the SdiA regulon. J. Bacteriol.?2003, 185, 1357–1366, doi:10.1128/JB.185.4.1357-1366.2003.
[33]  Wagner-D?bler, I.; Thiel, V.; Allgaier, M.; Bodor, A.; Meyer, S.; Ebner, S.; Hennig, A.; Pukall, R.; Schulz, S. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host-associated marine alphaproteobacteria. Chembiochem?2005, 6, 2195–2206, doi:10.1002/cbic.200500189.
[34]  Sun, J.; Daniel, R.; Wagner-D?bler, I.; Zeng, A.P. Is autoinducer-2 a universal signal for interspecies communication: A comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol.?2004, 4, 36–47, doi:10.1186/1471-2148-4-36. 15456522
[35]  NC-UIB; Nomenclature for Incompletely Specified Bases in Nucleic Acid Sequences. Available online: http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html (accessed on 20 August 2012).
[36]  Don, R.H.; Cox, P.T.; Wainwright, B.J.; Baker, K.; Mattick, J.S. Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res.?1991, 19, 4008, doi:10.1093/nar/19.14.4008.
[37]  Hecker, K.H.; Roux, K.H. High and Low annealing temperatures increase both specificity and yield in touchdown and stepdown pcr. Biotechniques?1996, 20, 478–485. 8679209
[38]  Korbie, D.J.; Mattick, J.S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc.?2008, 3, 1452–1456, doi:10.1038/nprot.2008.133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133