|
On meromorphic $ alpha $-close-to-convex functionDOI: 10.5556/j.tkjm.32.2001.1-8 Abstract: Let $ B(alpha) $ denote the class of all functions $ f $ meromorphic in the unit disc $ E $ with $ z f(z) e 0 $, $ z^2 f'(z) e 0 $ in $ E $ satisfying the condition $$ int_{ heta_1}^{ heta_2} Re left{ alpha (1+z frac{f''(z) }{f'(z)} +(1- alpha) z frac{f'(z) }{f(z)} ight} d heta < pi $$ where $ 0 le heta_1 < heta_2 le heta_2 + 2 pi $, $ z = re^{i heta} $, $ r < 1 $ and $ alpha $ is a non-negative real numbers. We call $ f in B (alpha) $ a meromorphic $ alpha $-colse-to-convex function. This paper pertains to the study of some interesting properties of the class $ B (alpha) $.
|