|
BMC Cancer 2008
Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosisAbstract: RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines.Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death.Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery.An underlying mechanism of breast and other cancers involves aberrant transcription with numerous genes up or down-regulated [1-6]. It is reasonable to assume that further perturbing the improper transcription occurring in cancer cells could result in cancer cell death. Transcription, however, is a fundamental cellular process, and its targeting may affect non-cancerous cells. Nonetheless, it has been proposed that targeting transcription is possible and challenges in attaining cancer specificity can be overcome [7].RNA Polymerase II (RNAP) is the multisubunit enzyme responsible for generating all
|