We find approximate expressions and for the real and imaginary parts of the th zero of the Bessel polynomial . To obtain these closed-form formulas we use the fact that the points of well-defined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an implementation of the electrostatic interpretation formulas and then, a fit to the real and imaginary parts as functions of , and is obtained. It is shown that the resulting complex number is -convergent to for fixed . 1. Introduction The polynomial solutions of the differential equation were studied systematically in [1] by the first time. They are named (generalized) Bessel polynomials and are given explicitly by as it can be shown in [2]. Here, is the Pochhammer symbol and . Many properties as well as applications are associated to this equation; the traveling waves in the radial direction which are solutions of the wave equation in spherical coordinates can be written in terms of the polynomial solutions of (1.1). Also, this equation has application in network and filter design, isotropic turbulence fields, and more (see the monograph [2] or [3–14] and references therein for some other results). Among these, several results about the important problem concerning the location of its zeros have been obtained [8–11] and in [12], explicit expressions for sum rules and for the homogeneous product sum symmetric functions of zeros of these polynomials are given. On the other hand, the electrostatic interpretation of these zeros as the equilibrium configuration in the complex plane with a logarithmic electric potential and a dipole at the origin has been given in [13], and in [14] it is shown that this equilibrium configuration is not stable. Thus, these cases show that it is desirable to acquire new analytical knowledge about the location of the zeros of the Bessel polynomials. In this paper we give approximate explicit formulas for both the real and imaginary parts of the th zero of and show that the approximation order of these new formulas to the exact zeros of the Bessel polynomials is for fixed . The approach followed in this paper is simple and based on three items. The first is the electrostatic interpretation of the zeros of polynomials satisfying second-order differential equations [15–17], the second is a simple curve fitting of numerical data, and the third is the known fact that the points of well-defined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials
References
[1]
H. L. Krall and O. Frink, “A new class of orthogonal polynomials: the Bessel polynomials,” Transactions of the American Mathematical Society, vol. 65, pp. 100–115, 1949.
[2]
E. Grosswald, Bessel Polynomials, vol. 698 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978.
[3]
H. M. Srivastava, “Some orthogonal polynomials representing the energy spectral functions for a family of isotropic turbulence fields,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 64, no. 6, pp. 255–257, 1984.
[4]
J. L. López and N. M. Temme, “Large degree asymptotics of generalized Bessel polynomials,” Journal of Mathematical Analysis and Applications, vol. 377, no. 1, pp. 30–42, 2011.
[5]
?. E?ecio?lu, “Bessel polynomials and the partial sums of the exponential series,” SIAM Journal on Discrete Mathematics, vol. 24, no. 4, pp. 1753–1762, 2010.
[6]
C. Berg and C. Vignat, “Linearization coefficients of Bessel polynomials and properties of Student -distributions,” Constructive Approximation, vol. 27, no. 1, pp. 15–32, 2008.
[7]
L. Pasquini, “Accurate computation of the zeros of the generalized Bessel polynomials,” Numerische Mathematik, vol. 86, no. 3, pp. 507–538, 2000.
[8]
A. J. Carpenter, “Asymptotics for the zeros of the generalized Bessel polynomials,” Numerische Mathematik, vol. 62, no. 4, pp. 465–482, 1992.
[9]
F. W. J. Olver, “The asymptotic expansion of Bessel functions of large order,” Philosophical Transactions of the Royal Society of London Series A, vol. 247, pp. 328–368, 1954.
[10]
H.-J. Runckel, “Zero-free parabolic regions for polynomials with complex coefficients,” Proceedings of the American Mathematical Society, vol. 88, no. 2, pp. 299–304, 1983.
[11]
M. G. de Bruin, E. B. Saff, and R. S. Varga, “On the zeros of generalized Besselpolynomials I, II,” Indagationes Mathematicae, vol. 84, pp. 1–25, 1981.
[12]
F. Gálvez and J. S. Dehesa, “Some open problems of generalised Bessel polynomials,” Journal of Physics A, vol. 17, no. 14, pp. 2759–2766, 1984.
[13]
E. Hendriksen and H. van Rossum, “Electrostatic interpretation of zeros,” in Orthogonal Polynomials and Their Applications, M. Alfaro, J. S. Dehesa, F. J. Marcellan, J. L. Rubio de Francia, and J. Vinuesa, Eds., vol. 1329 of Lecture Notes in Mathematics, pp. 241–250, Springer, Berlin, Germany, 1988.
[14]
G. Valent and W. Van Assche, “The impact of Stieltjes' work on continued fractions and orthogonal polynomials: additional material,” Journal of Computational and Applied Mathematics, vol. 65, no. 1–3, pp. 419–447, 1995.
[15]
G. Szeg?, Orthogonal Polynomials, Colloquium Publications, American Mathematical Society, Providence, RI, USA, 1975.
[16]
F. Marcellán, A. Martínez-Finkelshtein, and P. Martinez-Gonzalez, “Electrostatic models for zeros of polynomials: old, new, and some open problems,” Journal of Computational and Applied Mathematics, vol. 207, pp. 258–272, 2007.
[17]
R. G. Campos, “Perturbed zeros of classical orthogonal polynomials,” Boletin de la Sociedad Matematica Mexicana, vol. 5, no. 1, pp. 143–153, 1999.
[18]
R. G. Campos, “Solving singular nonlinear two-point boundary value problems,” Boletin de la Sociedad Matematica Mexicana, vol. 3, no. 2, pp. 279–297, 1997.
[19]
R. G. Campos and L. A. Avila, “Some properties of orthogonal polynomials satisfying fourth order differential equations,” Glasgow Mathematical Journal, vol. 37, no. 1, pp. 105–113, 1995.