Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus.
References
[1]
Tripp, R.A.; Hamilton-Easton, A.M.; Cardin, R.D.; Nguyen, P.; Behm, F.G.; Woodland, D.L.; Doherty, P.C.; Blackman, M.A. Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: Role for a viral superantigen? J. Exp. Med. 1997, 185, 1641–1650, doi:10.1084/jem.185.9.1641.
[2]
Flano, E.; Woodland, D.L.; Blackman, M.A. A mouse model for infectious mononucleosis. Immunol. Res. 2002, 25, 201–217, doi:10.1385/IR:25:3:201.
[3]
Reddehase, M.J.; Simon, C.O.; Seckert, C.K.; Lemmermann, N.; Grzimek, N.K. Murine model of cytomegalovirus latency and reactivation. Curr. Top. Microbiol. Immunol. 2008, 325, 315–331.
[4]
Wang, H.; Beyer, I.; Persson, J.; Song, H.; Li, Z.; Richter, M.; Cao, H.; van Rensburg, R.; Yao, X.; Hudkins, K.; et al. A new human dsg2-transgenic mouse model for studying the tropism and pathology of human adenoviruses. J. Virol. 2012, 86, 6286–6302, doi:10.1128/JVI.00205-12.
[5]
Sellin, C.I.; Horvat, B. Current animal models: Transgenic animal models for the study of measles pathogenesis. Curr. Top. Microbiol. Immunol. 2009, 330, 111–127, doi:10.1007/978-3-540-70617-5_6.
[6]
Baric, R.S.; Sims, A.C. Humanized mice develop coronavirus respiratory disease. Proc. Natl. Acad. Sci. USA 2005, 102, 8073–8074, doi:10.1073/pnas.0503091102.
[7]
Lassnig, C.; Sanchez, C.M.; Egerbacher, M.; Walter, I.; Majer, S.; Kolbe, T.; Pallares, P.; Enjuanes, L.; Muller, M. Development of a transgenic mouse model susceptible to human coronavirus 229e. Proc. Natl. Acad. Sci. USA. 2005, 102, 8275–8280, doi:10.1073/pnas.0408589102.
[8]
Dorner, M.; Horwitz, J.A.; Robbins, J.B.; Barry, W.T.; Feng, Q.; Mu, K.; Jones, C.T.; Schoggins, J.W.; Catanese, M.T.; Burton, D.R.; et al. A genetically humanized mouse model for hepatitis c virus infection. Nature 2011, 474, 208–211.
[9]
Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nature 1983, 301, 527–530, doi:10.1038/301527a0.
[10]
McCune, J.M.; Namikawa, R.; Kaneshima, H.; Shultz, L.D.; Lieberman, M.; Weissman, I.L. The scid-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 1988, 241, 1632–1639.
[11]
Gobbi, A.; Stoddart, C.A.; Malnati, M.S.; Locatelli, G.; Santoro, F.; Abbey, N.W.; Bare, C.; Linquist-Stepps, V.; Moreno, M.B.; Herndier, B.G.; et al. Human herpesvirus 6 (hhv-6) causes severe thymocyte depletion in scid-hu thy/liv mice. J. Exp. Med. 1999, 189, 1953–1960, doi:10.1084/jem.189.12.1953.
[12]
Kern, E.R.; Rybak, R.J.; Hartline, C.B.; Bidanset, D.J. Predictive efficacy of scid-hu mouse models for treatment of human cytomegalovirus infections. Antivir. Chem. Chemother. 2001, 12, 149–156.
[13]
Dittmer, D.; Stoddart, C.; Renne, R.; Linquist-Stepps, V.; Moreno, M.E.; Bare, C.; McCune, J.M.; Ganem, D. Experimental transmission of kaposi's sarcoma-associated herpesvirus (kshv/hhv-8) to scid-hu thy/liv mice. J. Exp. Med. 1999, 190, 1857–1868, doi:10.1084/jem.190.12.1857.
[14]
Valsamakis, A.; Auwaerter, P.G.; Rima, B.K.; Kaneshima, H.; Griffin, D.E. Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J. Virol. 1999, 73, 8791–8797.
[15]
Moffat, J.F.; Zerboni, L.; Sommer, M.H.; Heineman, T.C.; Cohen, J.I.; Kaneshima, H.; Arvin, A.M. The orf47 and orf66 putative protein kinases of varicella-zoster virus determine tropism for human t cells and skin in the scid-hu mouse. Proc. Natl. Acad. Sci. USA 1998, 95, 11969–11974.
[16]
McCune, J.; Kaneshima, H.; Krowka, J.; Namikawa, R.; Outzen, H.; Peault, B.; Rabin, L.; Shih, C.C.; Yee, E.; Lieberman, M. The scid-hu mouse: A small animal model for hiv infection and pathogenesis. Annu. Rev. Immunol. 1991, 9, 399–429, doi:10.1146/annurev.iy.09.040191.002151.
[17]
Aldrovandi, G.M.; Feuer, G.; Gao, L.; Jamieson, B.; Kristeva, M.; Chen, I.S.; Zack, J.A. The scid-hu mouse as a model for hiv-1 infection. Nature 1993, 363, 732–736, doi:10.1038/363732a0.
[18]
Van Duyne, R.; Pedati, C.; Guendel, I.; Carpio, L.; Kehn-Hall, K.; Saifuddin, M.; Kashanchi, F. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 2009, 6, 76, doi:10.1186/1742-4690-6-76.
[19]
Mosier, D.E.; Gulizia, R.J.; Baird, S.M.; Wilson, D.B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988, 335, 256–259.
Traggiai, E.; Chicha, L.; Mazzucchelli, L.; Bronz, L.; Piffaretti, J.C.; Lanzavecchia, A.; Manz, M.G. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004, 304, 104–107, doi:10.1126/science.1093933.
[25]
Ito, M.; Hiramatsu, H.; Kobayashi, K.; Suzue, K.; Kawahata, M.; Hioki, K.; Ueyama, Y.; Koyanagi, Y.; Sugamura, K.; Tsuji, K.; et al. Nod/scid/gamma(c)(null) mouse: An excellent recipient mouse model for engraftment of human cells. Blood 2002, 100, 3175–3182, doi:10.1182/blood-2001-12-0207.
[26]
Melkus, M.W.; Estes, J.D.; Padgett-Thomas, A.; Gatlin, J.; Denton, P.W.; Othieno, F.A.; Wege, A.K.; Haase, A.T.; Garcia, J.V. Humanized mice mount specific adaptive and innate immune responses to ebv and tsst-1. Nat. Med. 2006, 12, 1316–1322, doi:10.1038/nm1431.
[27]
Shultz, L.D.; Lyons, B.L.; Burzenski, L.M.; Gott, B.; Chen, X.; Chaleff, S.; Kotb, M.; Gillies, S.D.; King, M.; Mangada, J.; et al. Human lymphoid and myeloid cell development in nod/ltsz-scid il2r gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 2005, 174, 6477–6489.
[28]
Islas-Ohlmayer, M.; Padgett-Thomas, A.; Domiati-Saad, R.; Melkus, M.W.; Cravens, P.D.; Martin Mdel, P.; Netto, G.; Garcia, J.V. Experimental infection of nod/scid mice reconstituted with human cd34+ cells with epstein-barr virus. J. Virol. 2004, 78, 13891–13900, doi:10.1128/JVI.78.24.13891-13900.2004.
[29]
Cocco, M.; Bellan, C.; Tussiwand, R.; Corti, D.; Traggiai, E.; Lazzi, S.; Mannucci, S.; Bronz, L.; Palummo, N.; Ginanneschi, C.; et al. Cd34+ cord blood cell-transplanted rag2-/- gamma(c)-/- mice as a model for epstein-barr virus infection. Am. J. Pathol. 2008, 173, 1369–1378, doi:10.2353/ajpath.2008.071186.
[30]
Yajima, M.; Imadome, K.; Nakagawa, A.; Watanabe, S.; Terashima, K.; Nakamura, H.; Ito, M.; Shimizu, N.; Honda, M.; Yamamoto, N.; et al. A new humanized mouse model of epstein-barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J. Infect. Dis. 2008, 198, 673–682, doi:10.1086/590502.
[31]
Strowig, T.; Gurer, C.; Ploss, A.; Liu, Y.F.; Arrey, F.; Sashihara, J.; Koo, G.; Rice, C.M.; Young, J.W.; Chadburn, A.; et al. Priming of protective t cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 2009, 206, 1423–1434, doi:10.1084/jem.20081720.
[32]
Watanabe, S.; Terashima, K.; Ohta, S.; Horibata, S.; Yajima, M.; Shiozawa, Y.; Dewan, M.Z.; Yu, Z.; Ito, M.; Morio, T.; et al. Hematopoietic stem cell-engrafted nod/scid/il2rgamma null mice develop human lymphoid systems and induce long-lasting hiv-1 infection with specific humoral immune responses. Blood 2007, 109, 212–218, doi:10.1182/blood-2006-04-017681.
[33]
Baenziger, S.; Tussiwand, R.; Schlaepfer, E.; Mazzucchelli, L.; Heikenwalder, M.; Kurrer, M.O.; Behnke, S.; Frey, J.; Oxenius, A.; Joller, H.; et al. Disseminated and sustained hiv infection in cd34+ cord blood cell-transplanted rag2-/-gamma c-/- mice. Proc. Natl. Acad. Sci. USA 2006, 103, 15951–15956, doi:10.1073/pnas.0604493103.
[34]
Sun, Z.; Denton, P.W.; Estes, J.D.; Othieno, F.A.; Wei, B.L.; Wege, A.K.; Melkus, M.W.; Padgett-Thomas, A.; Zupancic, M.; Haase, A.T.; et al. Intrarectal transmission, systemic infection, and cd4+ t cell depletion in humanized mice infected with hiv-1. J. Exp. Med. 2007, 204, 705–714, doi:10.1084/jem.20062411.
[35]
Zhang, L.; Kovalev, G.I.; Su, L. Hiv-1 infection and pathogenesis in a novel humanized mouse model. Blood 2007, 109, 2978–2981.
[36]
Berges, B.K.; Wheat, W.H.; Palmer, B.E.; Connick, E.; Akkina, R. Hiv-1 infection and cd4 t cell depletion in the humanized rag2-/-gamma c-/- (rag-hu) mouse model. Retrovirology 2006, 3, 76, doi:10.1186/1742-4690-3-76.
[37]
Miyazato, P.; Yasunaga, J.; Taniguchi, Y.; Koyanagi, Y.; Mitsuya, H.; Matsuoka, M. De novo human t-cell leukemia virus type 1 infection of human lymphocytes in nod-scid, common gamma-chain knockout mice. J. Virol. 2006, 80, 10683–10691, doi:10.1128/JVI.01009-06.
[38]
Takajo, I.; Umeki, K.; Morishita, K.; Yamamoto, I.; Kubuki, Y.; Hatakeyama, K.; Kataoka, H.; Okayama, A. Engraftment of peripheral blood mononuclear cells from human t-lymphotropic virus type 1 carriers in nod/scid/gammac(null) (nog) mice. Int. J. Cancer 2007, 121, 2205–2211, doi:10.1002/ijc.22972.
[39]
Banerjee, P.; Tripp, A.; Lairmore, M.D.; Crawford, L.; Sieburg, M.; Ramos, J.C.; Harrington, W. Jr.; Beilke, M.A.; Feuer, G. Adult t-cell leukemia/lymphoma development in htlv-1-infected humanized scid mice. Blood 2010, 115, 2640–2648, doi:10.1182/blood-2009-10-246959.
[40]
Bente, D.A.; Melkus, M.W.; Garcia, J.V.; Rico-Hesse, R. Dengue fever in humanized nod/scid mice. J. Virol. 2005, 79, 13797–13799.
[41]
Kuruvilla, J.G.; Troyer, R.M.; Devi, S.; Akkina, R. Dengue virus infection and immune response in humanized rag2(-/-)gamma(c)(-/-) (rag-hu) mice. Virology 2007, 369, 143–152, doi:10.1016/j.virol.2007.06.005.
[42]
Kwant-Mitchell, A.; Ashkar, A.A.; Rosenthal, K.L. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J. Virol. 2009, 83, 10664–10676, doi:10.1128/JVI.02584-08.
Yu, C.I.; Gallegos, M.; Marches, F.; Zurawski, G.; Ramilo, O.; Garcia-Sastre, A.; Banchereau, J.; Palucka, A.K. Broad influenza-specific cd8+ t-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood 2008, 112, 3671–3678, doi:10.1182/blood-2008-05-157016.
[45]
Tu, W.; Zheng, J.; Liu, Y.; Sia, S.F.; Liu, M.; Qin, G.; Ng, I.H.; Xiang, Z.; Lam, K.T.; Peiris, J.S.; et al. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta t cell population in humanized mice. J. Exp. Med. 2011, 208, 1511–1522, doi:10.1084/jem.20110226.
[46]
Bissig, K.D.; Wieland, S.F.; Tran, P.; Isogawa, M.; Le, T.T.; Chisari, F.V.; Verma, I.M. Human liver chimeric mice provide a model for hepatitis b and c virus infection and treatment. J. Clin. Invest. 2010, 120, 924–930, doi:10.1172/JCI40094.
[47]
Dandri, M.; Burda, M.R.; Torok, E.; Pollok, J.M.; Iwanska, A.; Sommer, G.; Rogiers, X.; Rogler, C.E.; Gupta, S.; Will, H.; et al. Repopulation of mouse liver with human hepatocytes and In vivo infection with hepatitis b virus. Hepatology 2001, 33, 981–988, doi:10.1053/jhep.2001.23314.
[48]
Mercer, D.F.; Schiller, D.E.; Elliott, J.F.; Douglas, D.N.; Hao, C.; Rinfret, A.; Addison, W.R.; Fischer, K.P.; Churchill, T.A.; Lakey, J.R.; et al. Hepatitis c virus replication in mice with chimeric human livers. Nat. Med. 2001, 7, 927–933, doi:10.1038/90968.
[49]
Washburn, M.L.; Bility, M.T.; Zhang, L.; Kovalev, G.I.; Buntzman, A.; Frelinger, J.A.; Barry, W.; Ploss, A.; Rice, C.M.; Su, L. A humanized mouse model to study hepatitis c virus infection, immune response, and liver disease. Gastroenterology 2011, 140, 1334–1344, doi:10.1053/j.gastro.2011.01.001.
[50]
Villaudy, J.; Wencker, M.; Gadot, N.; Gillet, N.A.; Scoazec, J.Y.; Gazzolo, L.; Manz, M.G.; Bangham, C.R.; Dodon, M.D. Htlv-1 propels thymic human t cell development in "human immune system" rag2(-)/(-) gamma c(-)/(-) mice. PLoS Pathog 2011, 7, e1002231, doi:10.1371/journal.ppat.1002231.
[51]
Kuwana, Y.; Takei, M.; Yajima, M.; Imadome, K.; Inomata, H.; Shiozaki, M.; Ikumi, N.; Nozaki, T.; Shiraiwa, H.; Kitamura, N.; et al. Epstein-barr virus induces erosive arthritis in humanized mice. PLoS One 2011, 6, e26630.
[52]
Yajima, M.; Imadome, K.; Nakagawa, A.; Watanabe, S.; Terashima, K.; Nakamura, H.; Ito, M.; Shimizu, N.; Yamamoto, N.; Fujiwara, S. T cell-mediated control of epstein-barr virus infection in humanized mice. J. Infect. Dis. 2009, 200, 1611–1615, doi:10.1086/644644.
[53]
Sato, K.; Misawa, N.; Nie, C.; Satou, Y.; Iwakiri, D.; Matsuoka, M.; Takahashi, R.; Kuzushima, K.; Ito, M.; Takada, K.; et al. A novel animal model of epstein-barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 2011, 117, 5663–5673, doi:10.1182/blood-2010-09-305979.
[54]
Watanabe, S.; Ohta, S.; Yajima, M.; Terashima, K.; Ito, M.; Mugishima, H.; Fujiwara, S.; Shimizu, K.; Honda, M.; Shimizu, N.; et al. Humanized nod/scid/il2r{gamma}null mice transplanted with hematopoietic stem cells under non-myeloablative condition show prolonged lifespans and allow detailed analysis of hiv-1 pathogenesis. J. Virol. 2007.
[55]
Kumar, P.; Ban, H.S.; Kim, S.S.; Wu, H.; Pearson, T.; Greiner, D.L.; Laouar, A.; Yao, J.; Haridas, V.; Habiro, K. et al. T cell-specific sirna delivery suppresses hiv-1 infection in humanized mice. Cell 2008, 134, 577–586, doi:10.1016/j.cell.2008.06.034.
Mota, J.; Rico-Hesse, R. Dengue virus tropism in humanized mice recapitulates human dengue fever. PLoS One 2011, 6, e20762, doi:10.1371/journal.pone.0020762.
[58]
Boss, I.W.; Nadeau, P.E.; Abbott, J.R.; Yang, Y.; Mergia, A.; Renne, R. A kaposi's sarcoma-associated herpesvirus-encoded ortholog of microrna mir-155 induces human splenic b-cell expansion in nod/ltsz-scid il2rgammanull mice. J. Virol. 2011, 85, 9877–9886.
[59]
Marodon, G.; Desjardins, D.; Mercey, L.; Baillou, C.; Parent, P.; Manuel, M.; Caux, C.; Bellier, B.; Pasqual, N.; Klatzmann, D. High diversity of the immune repertoire in humanized nod.Scid.Gamma c-/- mice. Eur J. Immunol. 2009, 39, 2136–2145, doi:10.1002/eji.200939480.
[60]
Brainard, D.M.; Seung, E.; Frahm, N.; Cariappa, A.; Bailey, C.C.; Hart, W.K.; Shin, H.S.; Brooks, S.F.; Knight, H.L.; Eichbaum, Q. et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized blt mice. J. Virol. 2009, 83, 7305–7321, doi:10.1128/JVI.02207-08.
[61]
Jaiswal, S.; Pazoles, P.; Woda, M.; Shultz, L.D.; Greiner, D.L.; Brehm, M.A.; Mathew, A. Enhanced humoral and hla-a2-restricted dengue virus-specific t-cell responses in humanized blt nsg mice. Immunology 2012, 136, 334–343, doi:10.1111/j.1365-2567.2012.03585.x.
[62]
Ma, S.D.; Hegde, S.; Young, K.H.; Sullivan, R.; Rajesh, D.; Zhou, Y.; Jankowska-Gan, E.; Burlingham, W.J.; Sun, X.; Gulley, M.L. et al. A new model of epstein-barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 2011, 85, 165–177, doi:10.1128/JVI.01512-10.
[63]
Ma, S.D.; Yu, X.; Mertz, J.E.; Gumperz, J.E.; Reinheim, E.; Zhou, Y.; Tang, W.; Burlingham, W.J.; Gulley, M.L.; Kenney, S.C. An epstein-barr virus (ebv) mutant with enhanced bzlf1 expression causes lymphomas with abortive lytic ebv infection in a humanized mouse model. J. Virol. 2012, 86, 7976–7987, doi:10.1128/JVI.00770-12.
[64]
Rickinson, A.B.; Kieff, E.D. Epstein-barr virus. In Fields Virology, 5th; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2007; Volume 2, pp. 2655–2700.
[65]
Hislop, A.D.; Taylor, G.S.; Sauce, D.; Rickinson, A.B. Cellular responses to viral infection in humans: Lessons from epstein-barr virus. Annu. Rev. Immunol. 2007, 25, 587–617, doi:10.1146/annurev.immunol.25.022106.141553.
[66]
Zhang, B.; Kracker, S.; Yasuda, T.; Casola, S.; Vanneman, M.; Homig-Holzel, C.; Wang, Z.; Derudder, E.; Li, S.; Chakraborty, T. et al. Immune surveillance and therapy of lymphomas driven by epstein-barr virus protein lmp1 in a mouse model. Cell 2012, 148, 739–751, doi:10.1016/j.cell.2011.12.031.
[67]
Kieff, E.D.; Rickinson, A.B. Epstein-barr virus and its replication. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2007; Volume 2, pp. 2603–2654.
[68]
Shope, T.; Dechairo, D.; Miller, G. Malignant lymphoma in cottontop marmosets after inoculation with epstein-barr virus. Proc. Natl. Acad. Sci. USA 1973, 70, 2487–2491, doi:10.1073/pnas.70.9.2487.
[69]
Johannessen, I.; Crawford, D.H. In vivo models for epstein-barr virus (ebv)-associated b cell lymphoproliferative disease (blpd). Rev. Med. Virol. 1999, 9, 263–277, doi:10.1002/(SICI)1099-1654(199910/12)9:4<263::AID-RMV256>3.0.CO;2-D.
[70]
Epstein, M.A.; zur Hausen, H.; Ball, G.; Rabin, H. Pilot experiments with eb virus in owl monkeys (aotus trivirgatus). Iii. Serological and biochemical findings in an animal with reticuloproliferative disease. Int. J. Cancer 1975, 15, 17–22.
[71]
Takashima, K.; Ohashi, M.; Kitamura, Y.; Ando, K.; Nagashima, K.; Sugihara, H.; Okuno, K.; Sairenji, T.; Hayashi, K. A new animal model for primary and persistent epstein-barr virus infection: Human ebv-infected rabbit characteristics determined using sequential imaging and pathological analysis. J. Med. Virol. 2008, 80, 455–466, doi:10.1002/jmv.21102.
[72]
Epstein, M.A.; Morgan, A.J.; Finerty, S.; Randle, B.J.; Kirkwood, J.K. Protection of cottontop tamarins against epstein-barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature 1985, 318, 287–289.
[73]
Moghaddam, A.; Rosenzweig, M.; Lee-Parritz, D.; Annis, B.; Johnson, R.P.; Wang, F. An animal model for acute and persistent epstein-barr virus infection. Science 1997, 276, 2030–2033, doi:10.1126/science.276.5321.2030.
[74]
Wang, F. A new animal model for epstein-barr virus pathogenesis. Curr. Top. Microbiol. Immunol. 2001, 258, 201–219.
[75]
Rowe, M.; Young, L.S.; Crocker, J.; Stokes, H.; Henderson, S.; Rickinson, A.B. Epstein-barr virus (ebv)-associated lymphoproliferative disease in the scid mouse model: Implications for the pathogenesis of ebv-positive lymphomas in man. J. Exp. Med. 1991, 173, 147–158.
[76]
Mosier, D.E.; Gulizia, R.J.; Baird, S.M.; Spector, S.; Spector, D.; Kipps, T.J.; Fox, R.I.; Carson, D.A.; Cooper, N.; Richman, D.D. et al. Studies of hiv infection and the development of epstein-barr virus-related b cell lymphomas following transfer of human lymphocytes to mice with severe combined immunodeficiency. Curr. Top Microbiol. Immunol. 1989, 152, 195–199.
[77]
Veronese, M.L.; Veronesi, A.; D'Andrea, E.; Del Mistro, A.; Indraccolo, S.; Mazza, M.R.; Mion, M.; Zamarchi, R.; Menin, C.; Panozzo, M. et al. Lymphoproliferative disease in human peripheral blood mononuclear cell-injected scid mice. I. T lymphocyte requirement for b cell tumor generation. J. Exp. Med. 1992, 176, 1763–1767, doi:10.1084/jem.176.6.1763.
[78]
Johannessen, I.; Asghar, M.; Crawford, D.H. Essential role for t cells in human b-cell lymphoproliferative disease development in severe combined immunodeficient mice. Br. J. Haematol. 2000, 109, 600–610, doi:10.1046/j.1365-2141.2000.02066.x.
[79]
Baiocchi, R.A.; Ross, M.E.; Tan, J.C.; Chou, C.C.; Sullivan, L.; Haldar, S.; Monne, M.; Seiden, M.V.; Narula, S.K.; Sklar, J. et al. Lymphomagenesis in the scid-hu mouse involves abundant production of human interleukin-10. Blood 1995, 85, 1063–1074.
[80]
Piovan, E.; Tosello, V.; Indraccolo, S.; Cabrelle, A.; Baesso, I.; Trentin, L.; Zamarchi, R.; Tamamura, H.; Fujii, N.; Semenzato, G. et al. Chemokine receptor expression in ebv-associated lymphoproliferation in hu/scid mice: Implications for cxcl12/cxcr4 axis in lymphoma generation. Blood 2005, 105, 931–939.
[81]
Dierksheide, J.E.; Baiocchi, R.A.; Ferketich, A.K.; Roychowdhury, S.; Pelletier, R.P.; Eisenbeis, C.F.; Caligiuri, M.A.; VanBuskirk, A.M. Ifn-gamma gene polymorphisms associate with development of ebv+ lymphoproliferative disease in hu pbl-scid mice. Blood 2005, 105, 1558–1565, doi:10.1182/blood-2003-07-2476.
[82]
White, R.E.; Ramer, P.C.; Naresh, K.N.; Meixlsperger, S.; Pinaud, L.; Rooney, C.; Savoldo, B.; Coutinho, R.; Bodor, C.; Gribben, J. et al. Ebna3b-deficient ebv promotes b cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Invest. 2012, 122, 1487–1502, doi:10.1172/JCI58092.
[83]
Lacerda, J.F.; Ladanyi, M.; Louie, D.C.; Fernandez, J.M.; Papadopoulos, E.B.; O'Reilly, R.J. Human epstein-barr virus (ebv)-specific cytotoxic t lymphocytes home preferentially to and induce selective regressions of autologous ebv-induced b cell lymphoproliferations in xenografted c.B-17 scid/scid mice. J. Exp. Med. 1996, 183, 1215–1228, doi:10.1084/jem.183.3.1215.
May, K.F., Jr.; Roychowdhury, S.; Bhatt, D.; Kocak, E.; Bai, X.F.; Liu, J.Q.; Ferketich, A.K.; Martin, E.W., Jr.; Caligiuri, M.A.; Zheng, P. et al. Anti-human ctla-4 monoclonal antibody promotes t-cell expansion and immunity in a hu-pbl-scid model: A new method for preclinical screening of costimulatory monoclonal antibodies. Blood 2005, 105, 1114–1120.
[86]
Eisenbeis, C.F.; Grainger, A.; Fischer, B.; Baiocchi, R.A.; Carrodeguas, L.; Roychowdhury, S.; Chen, L.; Banks, A.L.; Davis, T.; Young, D. et al. Combination immunotherapy of b-cell non-hodgkin's lymphoma with rituximab and interleukin-2: A preclinical and phase i study. Clin. Cancer Res. 2004, 10, 6101–6110.
[87]
Baiocchi, R.A.; Ward, J.S.; Carrodeguas, L.; Eisenbeis, C.F.; Peng, R.; Roychowdhury, S.; Vourganti, S.; Sekula, T.; O'Brien, M.; Moeschberger, M. et al. Gm-csf and il-2 induce specific cellular immunity and provide protection against epstein-barr virus lymphoproliferative disorder. J. Clin. Invest. 2001, 108, 887–894.
[88]
Baiocchi, R.A.; Caligiuri, M.A. Low-dose interleukin 2 prevents the development of epstein-barr virus (ebv)-associated lymphoproliferative disease in scid/scid mice reconstituted i.P. With ebv-seropositive human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 1994, 91, 5577–5581, doi:10.1073/pnas.91.12.5577.
[89]
Bohlen, H.; Manzke, O.; Titzer, S.; Lorenzen, J.; Kube, D.; Engert, A.; Abken, H.; Wolf, J.; Diehl, V.; Tesch, H. Prevention of epstein-barr virus-induced human b-cell lymphoma in severe combined immunodeficient mice treated with cd3xcd19 bispecific antibodies, cd28 monospecific antibodies, and autologous t cells. Cancer Res. 1997, 57, 1704–1709.
[90]
Lim, W.H.; Kireta, S.; Russ, G.R.; Coates, P.T. Human plasmacytoid dendritic cells regulate immune responses to epstein-barr virus (ebv) infection and delay ebv-related mortality in humanized nod-scid mice. Blood 2007, 109, 1043–1050.
Kawaguchi, H.; Miyashita, T.; Herbst, H.; Niedobitek, G.; Asada, M.; Tsuchida, M.; Hanada, R.; Kinoshita, A.; Sakurai, M.; Kobayashi, N. et al. Epstein-barr virus-infected t lymphocytes in epstein-barr virus-associated hemophagocytic syndrome. J. Clin. Invest. 1993, 92, 1444–1450, doi:10.1172/JCI116721.
[97]
Lay, J.D.; Tsao, C.J.; Chen, J.Y.; Kadin, M.E.; Su, I.J. Upregulation of tumor necrosis factor-alpha gene by epstein-barr virus and activation of macrophages in epstein-barr virus-infected t cells in the pathogenesis of hemophagocytic syndrome. J. Clin. Invest. 1997, 100, 1969–1979.
[98]
Yang, X.; Wada, T.; Imadome, K.; Nishida, N.; Mukai, T.; Fujiwara, M.; Kawashima, H.; Kato, F.; Fujiwara, S.; Yachie, A. et al. Characterization of epstein-barr virus (ebv)-infected cells in ebv-associated hemophagocytic lymphohistiocytosis in two patients with x-linked lymphoproliferative syndrome type 1 and type 2. Herpesviridae 2012, 3, 1, doi:10.1186/2042-4280-3-1.
[99]
Imadome, K.; Yajima, M.; Arai, A.; Nakazawa, A.; Kawano, F.; Ichikawa, S.; Shimizu, N.; Yamamoto, N.; Morio, T.; Ohga, S. et al. Novel mouse xenograft models reveal a critical role of cd4+ t cells in the proliferation of ebv-infected t and nk cells. PLoS Pathog 2011, 7, e1002326.
[100]
McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N Engl J. Med. 2011, 365, 2205–2219, doi:10.1056/NEJMra1004965.
[101]
Niller, H.H.; Wolf, H.; Ay, E.; Minarovits, J. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. Adv. Exp. Med. Biol 2011, 711, 82–102.
[102]
Toussirot, E.; Roudier, J. Pathophysiological links between rheumatoid arthritis and the epstein-barr virus: An update. Joint Bone Spine 2007, 74, 418–426, doi:10.1016/j.jbspin.2007.05.001.
[103]
Takei, M.; Mitamura, K.; Fujiwara, S.; Horie, T.; Ryu, J.; Osaka, S.; Yoshino, S.; Sawada, S. Detection of epstein-barr virus-encoded small rna 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int. Immunol. 1997, 9, 739–743, doi:10.1093/intimm/9.5.739.
Watanabe, Y.; Takahashi, T.; Okajima, A.; Shiokawa, M.; Ishii, N.; Katano, I.; Ito, R.; Ito, M.; Minegishi, M.; Minegishi, N. et al. The analysis of the functions of human b and t cells in humanized nod/shi-scid/gammac(null) (nog) mice (hu-hsc nog mice). Int. Immunol. 2009, 21, 843–858, doi:10.1093/intimm/dxp050.
[106]
Danner, R.; Chaudhari, S.N.; Rosenberger, J.; Surls, J.; Richie, T.L.; Brumeanu, T.D.; Casares, S. Expression of hla class ii molecules in humanized nod.Rag1ko.Il2rgcko mice is critical for development and function of human t and b cells. PLoS One 2011, 6, e19826.
[107]
Lee, M.A.; Yates, J.L. Bhrf1 of epstein-barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of b cells or for virus replication in vitro. J. Virol. 1992, 66, 1899–1906.
[108]
Shimizu, N.; Yoshiyama, H.; Takada, K. Clonal propagation of epstein-barr virus (ebv) recombinants in ebv-negative akata cells. J. Virol. 1996, 70, 7260–7263.
[109]
Swaminathan, S.; Hesselton, R.; Sullivan, J.; Kieff, E. Epstein-barr virus recombinants with specifically mutated bcrf1 genes. J. Virol. 1993, 67, 7406–7413.
[110]
Okano, M. Overview and problematic standpoints of severe chronic active epstein-barr virus infection syndrome. Crit. Rev. Oncol. Hematol. 2002, 44, 273–282, doi:10.1016/S1040-8428(02)00118-X.
Kimura, H. Pathogenesis of chronic active epstein-barr virus infection: Is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Re. Med. Virol. 2006, 16, 251–261.
[113]
Jaffe, E.S. The 2008 who classification of lymphomas: Implications for clinical practice and translational research. Hematology Am. Soc. Hematol. Educ Program 2009, 523–531, doi:10.1182/asheducation-2009.1.523.
Strowig, T.; Rongvaux, A.; Rathinam, C.; Takizawa, H.; Borsotti, C.; Philbrick, W.; Eynon, E.E.; Manz, M.G.; Flavell, R.A. Transgenic expression of human signal regulatory protein alpha in rag2-/-gamma(c)-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl. Acad. Sci. USA 2011, 108, 13218–13223, doi:10.1073/pnas.1109769108.
[116]
Legrand, N.; Huntington, N.D.; Nagasawa, M.; Bakker, A.Q.; Schotte, R.; Strick-Marchand, H.; de Geus, S.J.; Pouw, S.M.; Bohne, M.; Voordouw, A. et al. Functional cd47/signal regulatory protein alpha (sirp(alpha)) interaction is required for optimal human t- and natural killer- (nk) cell homeostasis in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 13224–13229.