全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Cancer  2010 

Cellular processes of v-Src transformation revealed by gene profiling of primary cells - Implications for human cancer

DOI: 10.1186/1471-2407-10-41

Full-Text   Cite this paper   Add to My Lib

Abstract:

CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets.The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis.By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.The v-Src kinase, the product of the Rous sarcoma virus (RSV), has provided a paradigm for the study of signaling pathways and mechanisms of cell transformation by receptor and non-receptor type tyrosine kinases. Its cellular counterpart, c-Src, is a member of a small family of kinases sharing a similar domain organization, overall structure and regulatory mechanism. Members of the Src family of kinases

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133