全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys

DOI: 10.3390/su5010163

Keywords: adaptation, anthropogenic impact, behavioral flexibility, climate change, intra-specific variation in social organization, phenotypic flexibility, phenotypic plasticity, Rhabdomys, social flexibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

The rapid rate of anthropogenic-related climate change is expected to severely impact ecosystems and their constituent organisms, leading to mass extinction. A rapid adaptive response of animals to such change could be due to reversible phenotypic flexibility, including behavioral flexibility. Our model, the African striped mouse Rhabdomys, is a small rodent widely distributed in southern Africa. The desert-living species R. pumilio displays social flexibility, whereby individuals switch their social organization in response to prevailing conditions, potentially allowing for persistence in rapidly changing environments. Individuals of the species from the moist grasslands ( R. dilectus) show some flexible traits, but opportunities to utilize this potential are apparently not realized. The climate in southern Africa is predicted to become drier, making both desert and grassland species vulnerable to environmental change. Based on realized or potential social flexibility in striped mice, we provide three (not mutually exclusive) scenarios that consider: (i) extinction of the desert species as its habitat changes; (ii) range expansion and utilization of pre-existing adaptations of the desert species to displace the current grassland species; and (iii) grassland species exploiting their potential flexibility (behavioral adaptation) and surviving in their current habitat. Behavioral flexibility is costly but could allow species to persist in rapidly changing environments.

References

[1]  Zidan?ek, A.; Blinc, R.; Jegli?, A.; Kabashi, S.; Bekteshi, S.; ?laus, I. Climate changes, biofuels and the sustainable future. Int. J. Hydrogen Energ. 2009, 34, 6980–6983.
[2]  Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485, doi:10.1038/nature09670.
[3]  Thackeray, S.J.; Sparks, T.H.; Frederiksen, M.; Burthes, S.; Bacon, P.J.; Bell, J.R.; Botham, M.C.; Brereton, T.M.; Bright, P.W.; Carvalhos, L.; et al. Trophic level asynchrony in rates of phonological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 2010, 16, 3304–3313, doi:10.1111/j.1365-2486.2010.02165.x.
[4]  West-Eberhard, M.J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 1989, 20, 249–278.
[5]  Przybylo, R.; Sheldon, B.C.; Meril?, J. Climate effects on breeding and morphology: Evidence for phenotypic plasticity. J. Anim. Ecol. 2000, 69, 395–403, doi:10.1046/j.1365-2656.2000.00401.x.
[6]  Chen, I-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026, doi:10.1126/science.1206432.
[7]  Huey, R.B.; Hertz, P.E.; Sinervo, B. Behavioral drive versus behavioral inertia in evolution: A null model approach. Am. Nat. 2003, 161, 357–366, doi:10.1086/346135.
[8]  Sinervo, B.; Losos, J.B. Walking the tight rope: arboreal sprint performance among Scleroporus occidentalis lizard populations. Ecology 1991, 72, 1225–1233, doi:10.2307/1941096.
[9]  Piersma, T.; van Gils, J.A. The Flexible Phenotype—A Body-Centred Integration of Ecology, Physiology and Behaviour; Oxford University Press: Oxford, UK, 2010.
[10]  Wilson, R.S.; Franklin, C.E. Testing the beneficial acclimation hypothesis. Trends Ecol. Evol. 2002, 17, 66–70, doi:10.1016/S0169-5347(01)02384-9.
[11]  Magistretti, P.J. Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 2006, 209, 2304–2311, doi:10.1242/jeb.02208.
[12]  Etterson, J.R.; Shaw, R.G. Constraint to adaptive evolution in response to global warming. Science 2001, 294, 151–154, doi:10.1126/science.1063656.
[13]  Alley, R.B.; Marotzke, J.; Nordhaus, W.D.; Overpeck, J.T.; Peteet, D.M.; Pielke, R.A., Jr.; Pierrehumbert, R.T.; Rhines, P.B.; Stocker, T.F.; Talley, L.D.; Wallace, J.M. Abrupt climate change. Science 2003, 299, 2005–2010.
[14]  Friedlingstein, P. A steep road to climate stabilization. Nature 2008, 451, 297–298, doi:10.1038/nature06593.
[15]  Sih, A.; Ferrari, M.C.O.; Harris, D.J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 2011, 4, 367–387, doi:10.1111/j.1752-4571.2010.00166.x.
[16]  McLaughlin, J.F.; Hellmann, J.J.; Boggs, C.L.; Ehrlich, P.R. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. USA 2002, 99, 6070–6074.
[17]  Pounds, J.A.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.L.; Foster, P.N.; La Marca, E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167.
[18]  Rezende, E.L.; Diniz-Filho, J.A. Phylogenetic analyses: Comparing species to infer adaptations and physiological mechanisms. Compr. Physiol. 2012, 2, 639–674.
[19]  Schluter, D. The Ecology of Adaptive Radiation; Oxford University Press: Oxford, UK, 2000.
[20]  Balmford, A.; Thomas, A.L.R.; Jones, I.L. Aerodynamics and the evolution of long tails in birds. Nature 1993, 361, 628–631, doi:10.1038/361628a0.
[21]  Garland, T.Jnr.; Carter, P.A. Evolutionary Physiology. Annu. Rev. Physiol. 1994, 56, 579–621, doi:10.1146/annurev.ph.56.030194.003051.
[22]  Huntley, B. The dynamic response of plants to environmental change and the resulting risks of extinction. In Conservation in a Changing World; Mace, G.M., Balmford, A., Ginsberg, J.R., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 69–85.
[23]  Jaeger, R.G. Potential extinction through competition between two species of terrestrial salamanders. Evolution 1970, 24, 632–642, doi:10.2307/2406842.
[24]  Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29, doi:10.1111/j.1365-294X.2007.03428.x.
[25]  Stockwell, C.A.; Hendry, A.P.; Kinnison, M.T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 2003, 18, 94–101, doi:10.1016/S0169-5347(02)00044-7.
[26]  McNair, M.R. Heavy metal tolerance in plants: a model evolutionary system. Trends Ecol. Evol. 1987, 2, 354–359, doi:10.1016/0169-5347(87)90135-2.
[27]  Tabashnik, B.E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 1994, 39, 47–79, doi:10.1146/annurev.en.39.010194.000403.
[28]  Piersma, T.; Lindstr?m, ?. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol. Evol. 1997, 12, 134–138, doi:10.1016/S0169-5347(97)01003-3.
[29]  Gordon, D.M. Behavioral flexibility and the foraging ecology of seed-eating ants. Am. Nat. 1991, 138, 379–411.
[30]  Stearns, S.C. The evolutionary significance of phenotypic plasticity. Bioscience 1989, 39, 436–445, doi:10.2307/1311135.
[31]  Scheiner, S.M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 1993, 24, 35–68.
[32]  Leichty, A.R.; Pfennig, D.W.; Jones, C.D.; Pfennig, K.S. Relaxed genetic constraint is ancestral to the evolution of phenotypic plasticity. Integr. Comp. Biol. 2012, 52, 16–30, doi:10.1093/icb/ics049.
[33]  Via, S.; Gomulkiewicz, R.; De Jong, G.; Scheiner, S.M.; Schlichting, C.D.; van Tienderen, P.H. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 1995, 10, 212–217, doi:10.1016/S0169-5347(00)89061-8.
[34]  Ledón-Rettig, C.C.; Pfennig, D.W.; Nasconde-Yoder, N. Ancestral variation and the potential for genetic accommodation in larval amphibians: Implications for the evolution of novel feeding strategies. Evol. Dev. 2008, 10, 316–325, doi:10.1111/j.1525-142X.2008.00240.x.
[35]  Rose, A. Defining and measuring economic resilience to disasters. Dis. Prev. Manage. 2004, 13, 307–314.
[36]  Potts, R. Variability selection in hominid evolution. Evol. Anthropol. 1998, 7, 81–96, doi:10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A.
[37]  Páez, D.J.; Bernatchez, L.; Dodson, J.J. Alternative life histories in the Atlantic salmon: Genetic covariances within the sneaker sexual tactic in males. Proc. Roy. Soc. (London) B 2011, 278, 2150–2158, doi:10.1098/rspb.2010.2045.
[38]  Colwell, R.K. Predictability, constancy, and contingency of periodic phenomena. Ecology 1974, 55, 1148–1153, doi:10.2307/1940366.
[39]  Zonneveld, I.S. The land unit—A fundamental concept in landscape ecology, and its applications. Landscape Ecol. 1989, 3, 67–86, doi:10.1007/BF00131171.
[40]  Wiens, J.A. Chapter 2: Ecological heterogeneity: an ontogeny of concepts and approaches. In The Ecological Consequences of Heterogeneity; Hutchings, M.J., John, E.A., Stewart, A.J.A., Eds.; Blackwell Science: Oxford, UK, 2000; pp. 9–31.
[41]  Chapin, F.S., III.; Torn, M.S.; Tateno, M. Principles of ecosystem sustainability. Am. Nat. 1996, 148, 1016–1037.
[42]  Breed, M.F.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Clarifying climate change adaptation responses for scattered trees in modified landscapes. J. Appl. Ecol. 2011, 48, 637–641, doi:10.1111/j.1365-2664.2011.01969.x.
[43]  Hau, M. Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. BioEssays 2007, 29, 133–144, doi:10.1002/bies.20524.
[44]  Moczek, A.P.; Sultan, S.; Foster, S.; Ledón-Rettig, C.; Dworkin, I.; Nijhout, H.F.; Abouheif, E.; Pfennig, D.W. The role of developmental plasticity in evolutionary innovation. Proc. Roy. Soc. (London) B 2011, 278, 2705–2713.
[45]  Smith-Gill, S.J. Developmental plasticity: developmental conversion versus phenotypic modulation. Am. Zool. 1983, 23, 47–55.
[46]  West-Eberhard, M.J. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B 2005, 304, 610–618, doi:10.1002/jez.b.21071.
[47]  Gienapp, P.; Teplitsky, C.; Alho, S.; Mills, J.A.; Meril?, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 2008, 17, 167–178, doi:10.1111/j.1365-294X.2007.03413.x.
[48]  Elekonich, M.M.; Robinson, G.E. Organizational and activational effects of hormones on insect behavior. J. Insect Physiol. 2000, 46, 1509–1515, doi:10.1016/S0022-1910(00)00101-3.
[49]  Zhou, H.; Wang, J.; Wan, J.; Jia, H. Resilience to natural hazards: a geographic perspective. Nat. Hazards 2010, 53, 21–41, doi:10.1007/s11069-009-9407-y.
[50]  Champagne, F.A. Epigenetic influence of social experience across the lifespan. Dev. Psychobiol. 2010, 52, 299–311, doi:10.1002/dev.20436.
[51]  Vasanthi, D.; Mishra, R.K. Epigenetic regulation of genes during development: A conserved theme from flies to mammals. J. Genet. Genomics 2008, 35, 413–429, doi:10.1016/S1673-8527(08)60059-4.
[52]  Munsky, B.; Neuert, G.; van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 2012, 336, 183–187, doi:10.1126/science.1216379.
[53]  Wingfield, J.C. Control of behavioural strategies for capricious environments. Anim. Behav. 2003, 66, 807–816, doi:10.1006/anbe.2003.2298.
[54]  Diniz-Filho, J.A.F.; Bini, L.M. Macroecology, global change and the shadow of forgotten ancestors. Global Ecol. Biogeogr. 2008, 17, 11–17.
[55]  Poisot, T.; Bever, J.D.; Nemri, A.; Thrall, P.H.; Hochberg, M.E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 2011, 14, 841–851, doi:10.1111/j.1461-0248.2011.01645.x.
[56]  Rhen, T.; Crews, D. Variation in reproductive behaviour within a sex: Neural systems and endocrine activation. J. Neuroendocrinol. 2002, 14, 517–531, doi:10.1046/j.1365-2826.2002.00820.x.
[57]  Duckworth, R.A. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 2009, 23, 513–531, doi:10.1007/s10682-008-9252-6.
[58]  Mery, F.; Burns, J.G. Behavioural plasticity: an interaction between evolution and experience. Evol. Ecol. 2010, 24, 571–583, doi:10.1007/s10682-009-9336-y.
[59]  Reader, S.M.; Laland, K.N. Social intelligence, innovation, and enhanced brain size in primates. P. Natl. Acad. Sci. USA 2002, 99, 4436–4441, doi:10.1073/pnas.062041299.
[60]  Sol, D.; Duncan, R.P.; Blackburn, T.M.; Cassey, P.; Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. P. Natl. Acad. Sci. USA 2005, 102, 5460–5465.
[61]  Sol, D.; Timmermans, S.; Lefebvre, L. Behavioural flexibility and invasion success in birds. Anim. Behav. 2002, 63, 495–502, doi:10.1006/anbe.2001.1953.
[62]  Berrigan, D.; Scheiner, S.M. Modeling the Evolution of Phenotypic Plasticity. In Phenotypic Plasticity: Functional and Conceptual Approaches; DeWitt, T.J., Scheiner, S.M., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 82–97.
[63]  Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992.
[64]  Relyea, R.A. The relationship between predation risk and antipredator responses in larval anurans. Ecology 2001, 82, 541–554, doi:10.1890/0012-9658(2001)082[0541:TRBPRA]2.0.CO;2.
[65]  Lucas, é.; Coderre, D.; Brodeur, J. Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 1998, 79, 1084–1092, doi:10.1890/0012-9658(1998)079[1084:IPAAPC]2.0.CO;2.
[66]  Bürger, R.; Lynch, M. Evolution and extinction in a changing environment: A quantitative-genetic analysis. Evolution 1995, 49, 151–163, doi:10.2307/2410301.
[67]  Kinnison, M.T.; Hairston, N.G., Jnr. Eco-evolutionary conservation biology: Contemporary evolution and the dynamics of persistence. Funct. Ecol. 2007, 21, 441–454.
[68]  West-Eberhard, M.J. Developmental Plasticity and the Origin of Species Differences; Oxford University Press: Oxford, UK, 2003.
[69]  Sol, D.; Lefebvre, L.; Rodriguez-Teijeiro, J.D. Brain size, innovative propensity and migratory behaviour in temperate Palearctic birds. Proc. Roy. Soc. (London) B 2005, 272, 1433–1441, doi:10.1098/rspb.2005.3099.
[70]  Schradin, C.; Lindholm, A.K.; Johannesen, J.; Schoepf, I.; Yuen, C-H.; K?nig, B.; Pillay, N. Social flexibility and social evolution in mammals: a case study of the African striped mouse (Rhabdomys pumilio). Mol. Ecol. 2012, 21, 541–553.
[71]  Schradin, C.; Lindholm, A.K. Relative fitness of alternative male reproductive tactics in a mammal varies between years. J. Anim. Ecol. 2011, 80, 908–917, doi:10.1111/j.1365-2656.2011.01831.x.
[72]  Eggert, A.-K. Alternative male mate-finding tactics in burying beetles. Behav. Ecol. 1992, 3, 243–254.
[73]  Müller, J.F.; Braunisch, V.; Hwang, W.; Eggert, A.-K. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 2006, 18, 196–203, doi:10.1093/beheco/arl073.
[74]  Davies, N.B. Dunnock Behaviour and Social Evolution; Oxford University Press: Oxford, UK, 1992.
[75]  Berry, R.J.; Tattersall, F.H.; Hurst, J. Genus Mus. In Mammals of the British Isles Handbook, 4th; Harris, S., Yalden, D.W., Eds.; The Mammal Society: Southampton, UK, 2008; pp. 141–149.
[76]  McGuire, B.; Getz, L.L. The nature and frequency of social interactions among free-living prairie voles (Microtus ochrogaster). Behav. Ecol. Sociobiol. 1998, 43, 271–279, doi:10.1007/s002650050491.
[77]  Randall, J.A.; Rogovin, K.; Parker, P.G.; Eimes, J.A. Flexible social structure of a desert rodent, Rhombomys opimus: philopatry, kinship, and ecological constraints. Behav. Ecol. 2005, 16, 961–973, doi:10.1093/beheco/ari078.
[78]  Skinner, J.D.; Chimimba, C.T. The Mammals of the Southern African Subregion; Cambridge University Press: Cape Town, South Africa, 2005.
[79]  Perrin, M.R. The feeding habits of two coexisting rodents, Rhabdomys pumilio (Sparrman, 1784) and Otomys irroratus Brants 1827 in relation to rainfall and reproduction. Acta Oecol. 1980, 1, 71–89.
[80]  Schradin, C.; Pillay, N. The striped mouse (Rhabdomys pumilio) from the Succulent Karoo, South Africa: A territorial group-living solitary forager with communal breeding and helpers at the nest. J. Comp. Psychol. 2004, 118, 37–47, doi:10.1037/0735-7036.118.1.37.
[81]  Rambau, R.V.; Robinson, T.J.; Stanyon, R. Molecular genetics of Rhabdomys pumilio subspecies boundaries: mtDNA phylogeography and karyotypic analysis by fluorescence in situ hybridization. Mol. Phylogenet. Evol. 2003, 28, 564–575, doi:10.1016/S1055-7903(03)00058-7.
[82]  Du Toit, N.; van Vuuren, B.J.; Matthee, S.; Matthee, C.A. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from Southern Africa with implications for taxonomy. Mol. Phylogenet. Evol. 2012, 65, 75–86, doi:10.1016/j.ympev.2012.05.036.
[83]  Meynard, C.N.; Pillay, N.; Perrigault, M.; Caminade, P.; Ganem, G. Evidence of environmental niche differentiation in the striped mouse (Rhabdomys sp.): Inference from its current distribution in southern Africa. Ecol. Evol. 2012, 2, 1008–1023, doi:10.1002/ece3.219.
[84]  Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 2006, 19, 540–567.
[85]  Jackson, T.P. The social organization and breeding system of Brants’ whistling rat (Parotomys brantsii). J. Zool. 1999, 247, 323–331, doi:10.1111/j.1469-7998.1999.tb00995.x.
[86]  Schradin, C.; Pillay, N. Intraspecific variation in the spatial and social organization of the African striped mouse. J. Mammal. 2005, 86, 99–107, doi:10.1644/1545-1542(2005)086<0099:IVITSA>2.0.CO;2.
[87]  Lynch, C.D. The Mammals of the Orange Free State; National Museum Bloemfontein: Bloemfontein, South Africa, 1983.
[88]  Taylor, K.D.; Green, M.G. The influence of rainfall on diet and reproduction in four African rodent species. J. Zool. 1976, 180, 367–389, doi:10.1111/j.1469-7998.1976.tb04683.x.
[89]  Schradin, C. When to live alone and when to live in groups: ecological determinants of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784). Belg. J. Zool. 2005, 135, 77–82.
[90]  Willan, K.; Meester, J. Life-History Styles of Southern African Mastomys natalensis, Otomys irroratus and Rhabdomys pumilio (Mammalia, Rodentia). In Alternative Life-History Styles of Animals; Bruton, M.N., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; pp. 421–439.
[91]  Schradin, C.; Schubert, M.; Pillay, N. Winter huddling groups in the striped mouse. Can. J. Zoolog. 2006, 117, 317–324.
[92]  Rymer, T.; Schradin, C.; Pillay, N. Social transmission of information about novel food in two populations of the African striped mouse, Rhabdomys pumilio. Anim. Behav. 2008, 76, 1297–1304, doi:10.1016/j.anbehav.2008.06.014.
[93]  Rymer, T.L.; Pillay, N. The development of exploratory behaviour in the African striped mouse Rhabdomys reflects a gene x environment compromise. Behav. Genet. 2012, 42, 845–856, doi:10.1007/s10519-012-9555-9.
[94]  Schradin, C.; Pillay, N. Paternal care in the social and diurnal striped mouse (Rhabdomys pumilio): Laboratory and field evidence. J. Comp. Psychol. 2003, 117, 317–324, doi:10.1037/0735-7036.117.3.317.
[95]  Ganem, G.; Meynard, C.N.; Perigault, M.; Lancaster, J.; Edwards, S.; Caminade, P.; Watson, J.; Pillay, N. Environmental correlates and co-occurrence of three mitochondrial lineages of striped mice (Rhabdomys) in the Free State Province (South Africa). Acta Oecol. 2012, 42, 30–40, doi:10.1016/j.actao.2012.01.003.
[96]  Schradin, C. Nest-site competition in two diurnal rodents from the Succulent Karoo of South Africa. J. Mammal. 2005, 86, 757–762, doi:10.1644/1545-1542(2005)086[0757:NCITDR]2.0.CO;2.
[97]  Scantlebury, M.; Bennett, N.C.; Speakman, J.R.; Pillay, N.; Schradin, C. Huddling in groups leads to daily energy savings in free-living African four-striped grass mice, Rhabdomys pumilio. Funct. Ecol. 2006, 20, 166–173, doi:10.1111/j.1365-2435.2006.01074.x.
[98]  Schradin, C. Territorial defense in a group living solitary forager: who, where, against whom? Beha. Ecol. Sociobiol. 2004, 55, 439–446, doi:10.1007/s00265-003-0733-x.
[99]  Schradin, C.; Pillay, N. The influence of the father on offspring development in the striped mouse. Behav. Ecol. 2005, 16, 450–455, doi:10.1093/beheco/ari015.
[100]  Brooks, P.M. The Ecology of the Four-Striped Field Mouse, Rhabdomys pumilio (Sparrman, 1784), with Particular Reference to a Population on the Van Riebeeck Nature Reserve, Pretoria. PhD dissertation, University of Pretoria, South Africa, 1974.
[101]  Brooks, P.M. Aspects of the reproduction, growth and development of the four-striped mouse, Rhabdomys pumilio (Sparrman, 1784). Mammalia 1982, 46, 53–64.
[102]  Schradin, C.; Pillay, N. Demography of the striped mouse (Rhabdomys pumilio) in the Succulent Karoo. Mamm. Biol. 2005, 70, 84–92, doi:10.1016/j.mambio.2004.06.004.
[103]  Schradin, C.; K?nig, B.; Pillay, N. Reproductive competition favours solitary living while ecological constraints impose group-living in African striped mice. J. Anim. Ecol. 2010, 79, 515–521, doi:10.1111/j.1365-2656.2009.01651.x.
[104]  Schubert, M.; Pillay, N.; Schradin, C. Parental and alloparental care in a polygynous mammal. J. Mammal. 2009, 90, 724–731, doi:10.1644/08-MAMM-A-175R1.1.
[105]  Schradin, C.; Scantlebury, M.; Pillay, N.; K?nig, B. Testosterone levels in dominant sociable males are lower than in solitary roamers: Physiological differences between three male reproductive tactics in a socially flexible mammal. Am. Nat. 2009, 173, 376–388, doi:10.1086/596535.
[106]  Schradin, C.; Schneider, C.; Yuen, C.H. Age at puberty in male African striped mice: the impact of food, population density and the presence of the father. Funct. Ecol. 2009, 23, 1004–1013, doi:10.1111/j.1365-2435.2009.01569.x.
[107]  Schradin, C.; Schneider, C.; Lindholm, A.K. The nasty neighbour in the striped mouse (Rhabdomys pumilio) steals paternity and elicits aggression. Front. Zool. 2010, 7, 19, doi:10.1186/1742-9994-7-19.
[108]  Meylan, S.; Miles, D.B.; Clobert, J. Hormonally mediated maternal effects, individual strategy and global change. Phil. Trans. R. Soc. B 2012, 367, 1647–1664, doi:10.1098/rstb.2012.0020.
[109]  Schradin, C. Differences in prolactin levels between three alternative male reproductive tactics in striped mice (Rhabdomys pumilio). P. Roy. Soc. Lond. B Bio. 2008, 275, 1047–1052, doi:10.1098/rspb.2008.0004.
[110]  Schradin, C.; Yuen, C.-H. Hormone levels of male African striped mice change as they switch between alternative reproductive tactics. Horm. Behav. 2011, 60, 676–680, doi:10.1016/j.yhbeh.2011.09.002.
[111]  Rymer, T.L.; Pillay, N. The influence of the early rearing environment on the development of paternal care in African striped mice. Ethology 2011, 117, 284–293, doi:10.1111/j.1439-0310.2011.01873.x.
[112]  Mackay, M.K. The Behaviour of two Sub-Species of the Striped Mouse Rhabdomys: The Role of Phylogeny and the Environment. MSc dissertation, University of the Witwatersrand, South Africa, 2011.
[113]  Schradin, C.; Kinahan, A.A.; Pillay, N. Cooperative breeding in groups of synchroneously mating females and evolution of large testes to avoid sperm depletion in African striped mice. Biol. Reprod. 2009, 81, 111–117, doi:10.1095/biolreprod.108.075838.
[114]  Kinahan, A.A.; Pillay, N. Dominance status influences female reproductive strategy in a territorial African rodent Rhabdomys pumilio. Behav. Ecol. Sociobiol. 2008, 62, 579–587, doi:10.1007/s00265-007-0482-3.
[115]  Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxford Rev. Econ. Pol. 2008, 24, 337–353, doi:10.1093/oxrep/grn019.
[116]  Hudson, D.A.; Jones, R.G. Simulations of Present-Day and Future Climate over Southern Africa using HadAM3H; Hadley Cent. Tech. Note 38; The Meteorological Office: Exeter, UK, 2002.
[117]  Sch?r, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; H?berli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336.
[118]  Tropical Data Hub. Wallace Initiative, Available online: http://wallaceinitiative.org/wallace/demo/taxonomies (accessed on 19 October 2012).
[119]  Uploader, S. Settlement on Agricultural Ground. Available online: http://cnx.org/content/m22344/1 (accessed on 14 October 2012).
[120]  Department of Environmental Affairs and Tourism. About South Africa. Available online: http://www.calflora.net/southafrica/temperature.html (accessed on 19 October 2012).
[121]  Green, M.W.; Rogers, P.J.; Ellman, N.A.; Gatenby, S.J. Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol. Behav. 1994, 55, 447–452, doi:10.1016/0031-9384(94)90099-X.
[122]  Midgley, G.F.; Hannah, L.; Millar, D.; Thuiller, W.; Booth, A. Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol. Conserv. 2003, 112, 87–97, doi:10.1016/S0006-3207(02)00414-7.
[123]  Van Jaarsveld, A.S.; Chown, S.L. Climate change and its impacts in South Africa. Trends Ecol. Evol. 2001, 16, 13–14, doi:10.1016/S0169-5347(00)02037-1.
[124]  Dukas, R. Costs of memory: Ideas and predictions. J. Theor. Biol. 1999, 197, 41–50, doi:10.1006/jtbi.1998.0856.
[125]  Gonzalez, A.; Ronce, O.; Ferriere, R.; Hochberg, M.E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Phil. Trans. R. Soc. B 2012, 368.
[126]  Purvis, A.; Gittleman, J.L.; Cowlishaw, G.; Mace, G.M. Predicting extinction risk in declining species. P. Roy. Soc. Lond. B Bio. 2000, 267, 1947–1952, doi:10.1098/rspb.2000.1234.
[127]  Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira de Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133