全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Community Engagement and Environmental Life Cycle Assessment of Kaikōura’s Biosolid Reuse Options

DOI: 10.3390/su5010242

Keywords: community engagement, biosolids, New Zealand, life cycle assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports a life cycle assessment undertaken to assess the environmental impact of a range of biosolid reuse options selected by the Kaikōura community. The reuse options were identified as: vermiculture and open-air composting; mixture with biochar; direct land application to disturbed sites for forestry using native tree species; and application to exotic forestry plantations or pastoral farmland. The aim of the study was to calculate the possible environmental impacts of the reuse options so the information can be used in a community dialogue process where the fate of the biosolids is decided upon. All reuse options showed improved environmental performance relative to landfilling. The direct application to land options showed the least environmental impact and the composting options had the most environmental impact. This is the first time this approach has been applied to biosolids management in New Zealand, and whilst there are limitations, the approach should be encouraged in other communities because it increases the engagement of the community with waste management decision-making and the environment.

References

[1]  Fitzmorris, K.B.; Sarmiento, F.; O'Callaghan, P. Biosolids and sludge management. Water Environ. Res. 2009, 81, 1376–1393, doi:10.2175/106143009X12445568399730.
[2]  Magesan, G.N.; Wang, H.; Clinton, P.W. Best Management Practices for Applying Biosolids to Forest Plantations in New Zealand; Scion Internal Report 17514; Scion: Christchurch, New Zealand, 2010.
[3]  Yusuf, S.A.; Georgakis, P.; Nwagboso, C. Procedural lot generation for evolutionary urban layout optimization in urban regeneration decision support. ITCON 2011, 16, 357–380.
[4]  Baumann, H.; Tillman, A.-M. The Hitchhikers guide to LCA. An Orientation in Life Cycle Assessment Methodology and Application, 1st ed.; Studentlitteratur AB: Lund, Sweden, 2004; p. 543.
[5]  Gunamantha, M. Sarto Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region. Yogyakarta. Renew. Energ. 2012, 41, 277–284, doi:10.1016/j.renene.2011.11.008.
[6]  Koroneos, C.J.; Nanaki, E.A. Integrated solid waste management and energy production-A life cycle assessment approach: The case study of the city of Thessaloniki. J. Clean. Prod. 2012, 27, 141–150, doi:10.1016/j.jclepro.2012.01.010.
[7]  Curry, R.; Powell, J.; Gribble, N.; Waite, S. A streamlined life-cycle assessment and decision tool for used tyres recycling. Proc. Inst. Civ. Eng. 2011, 164, 227–237.
[8]  Tunesi, S. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow. Waste Manage. 2011, 31, 561–571, doi:10.1016/j.wasman.2010.08.023.
[9]  Peters, G.M.; Rowley, H.V. Environmental comparison of biosolids management systems using life cycle assessment. Envir. Sci. Tech. Lib. 2009, 43, 2674–2679, doi:10.1021/es802677t.
[10]  Sablayrolles, C.; Gabrielle, B.; Montrejaud-Vignoles, M. Life Cycle Assessment of Biosolids Land Application and Evaluation of the Factors Impacting Human Toxicity through Plant Uptake. J. Ind. Ecol. 2010, 14, 231–241, doi:10.1111/j.1530-9290.2010.00222.x.
[11]  Peters, G.M.; Lundie, S. Life-cycle assessment of biosolids processing options. J. Ind. Ecol. 2001, 5, 103–121, doi:10.1162/10881980152830169.
[12]  ISO14040: 2006. Environmental Management-Life Cycle Assessment-Goal and scope definition and inventory analysis, International Organization for Standardization, Geneva, Switzerland, 2006.
[13]  ISO14044:2006. Environmental Management-Life Cycle Assessment-Requirements and Guidelines, International Organization for Standardization, Geneva, Switzerland, 2006.
[14]  Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; Spielmann, M. The ecoinvent database: Overview and methodological framework. Int. J. Life Cycle Ass. 2005, 10, 3–9, doi:10.1065/lca2004.10.181.1.
[15]  MoT. The New Zealand vehicle fleet: Annual fleet statistics, 2009. In Ministry of Transport, Te Manatu Waka; A statistical report; Wellington, New Zealand, 2010. ISBN 978-0-478-07228-0.
[16]  Thompson, J.; Singh, P. Status of Energy Use and Conservation Technologies Used in Fruit and Vegetable Cooling Operations in California; California Energy Commission, PIER Program, CEC-400-1999-005; University of California: Davis, United States of America, 2008.
[17]  McLaren, S., Jr.; Love, R.; McDevitt, J.E. Life Cycle Assessment Data Sets Greenhouse Gas Footprinting Project inventory report: Coolstores. A report for MAF and Zespri International (No. 12247); Ministry for Agriculture and Forestry: Wellington, New Zealand, 2011.
[18]  Chan, Y.C.; Sinha, R.K.; Wang, W. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Manage. Res. 2011, 29, 540–548, doi:10.1177/0734242X10375587.
[19]  Rodriguez, V.; Valdez-Perez, M.D.L.A.; Luna-Guido, M.; Ceballos-Ramirez, J.M.; Franco-Hernandez, O.; van Cleemput, O.; Marsch, R.; Thalasso, F.; Dendooven, L. Emission of nitrous oxide and carbon dioxide and dynamics of mineral N in wastewater sludge, vermicompost or inorganic fertilizer amended soil at different water contents: A laboratory study. Appl. Soil Ecol. 2011, 49, 263–267, doi:10.1016/j.apsoil.2011.06.009.
[20]  Forgie, D.J.L.; Sasser, L.W.; Neger, M.K. Compost Facility Requirements Guideline: How to Comply with Part 5 of the Organic Matter Recycling Regulation; Ministry of Water Land and Air Protection: British Columbia, Canada, 2004.
[21]  Ibarrola, R.; Shackley, S.; Hammond, J. Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment. Waste Manage. 2012, 32, 859–868, doi:10.1016/j.wasman.2011.10.005.
[22]  Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energ. Policy 2011, 39, 2646–2655, doi:10.1016/j.enpol.2011.02.033.
[23]  IPCC. IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4: Agriculture, Forestry and other Land Use; Intergovernmental Panel on Climate Change: Paris, France, 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm (accessed on 21 August 2012).
[24]  Adam, K. The Environmental and Health Implications of the Decomposition of Biosolids; University of Canterbury: Christchurch, New Zealand, 2003.
[25]  Palma, R.M. Evaluation of Ammonia volatilisation, Carbon Dioxide evolution and N balance from biosolids following application to forest soils. M.S. Thesis, University of Canterbury, Christchurch, New Zealand, 2000.
[26]  Knowles, O.A.; Robinson, B.H.; Contangelo, A.; Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 2011, 409, 3206–3210, doi:10.1016/j.scitotenv.2011.05.011.
[27]  Brown, S.; Beecher, N.; Carpenter, A. Calculator tool for determining greenhouse gas emissions for biosolids processing and end use. Envir. Sci. Tech. Lib. 2010, 44, 9509–9515.
[28]  Pierzynski, G.M.; Gehl, K.A. Plant nutrient issues for sustainable land application. J. Environ. Qual. 2005, 34, 18–28.
[29]  PE International. GaBi 4.4 Professional Life Cycle Software; University of Stuttgart: Germany, 2009. Available online: http://www.gabi-software.com (accessed on 3 May 2010).
[30]  McDevitt, J.E.; Seadon, J. Life Cycle Assessment Data Sets Greenhouse Gas Footprinting Project: Diesel. A report prepared for MAF and Zespri International (No. 12247); Ministry for Agriculture and Forestry: Wellington, New Zealand, 2011.
[31]  Robinson, B. Chemical Composition of the Kaikoura Biosolids. Hui presentation at Takahanga marae. April, 2011. Unpublished work.
[32]  Northcott, G. Contaminants in the Kaikoura Biosolids. Hui presentation at Takahanga marae. April, 2011. Unpublished work.
[33]  Cadena, E.; Coln, J.; Artola, A.; Sanchez, A.; Font, X. Environmental impact of two aerobic composting technologies using life cycle assessment. Int. J. Life Cycle Ass. 2009, 14, 401–410, doi:10.1007/s11367-009-0107-3.
[34]  van Haaren, R.; Themelis, N.J.; Barlaz, M. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC). Waste Manage. 2010, 30, 2649–2656, doi:10.1016/j.wasman.2010.06.007.
[35]  Fernandez-Luqueao, F.; Reyes-Varela, V.; Martanez-Suarez, C.; Reynoso-Keller, R.E.; Mandez-Bautista, J.; Ruiz-Romero, E.; Lapez-Valdez, F.; Luna-Guido, M.L.; Dendooven, L. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 2009, 407, 4289–4296, doi:10.1016/j.scitotenv.2009.04.016.
[36]  IPCC. Solid Waste disposal. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme; Hayama, Japan, 2006.
[37]  IPCC. Climate Change 2007. IPCC Fourth Assessment Report. The Physical Science Basis; 2007.
[38]  Guinée, J.B. Handbook on life cycle assessment. Operational guide to ISO standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692.
[39]  Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.; Mekonnen, M.M. Water Footprint Manual-State of the Art; Water Footprint Network: Enschede, The Netherlands, 2009.
[40]  Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox-The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Ass. 2008, 13, 532–546, doi:10.1007/s11367-008-0038-4.
[41]  StatsNZ. Water Physical Stock Account: 1995-2005; Statistics New Zealand: Wellington, New Zealand, 2007.
[42]  StatsNZ. Census of Population and Dwellings - Final Counts; Statistics New Zealand: Wellington, New Zealand, 2006.
[43]  Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Part 2: Impact assessment and interpretation. Int. J. Life Cycle Ass. 2008, 13, 374–388, doi:10.1007/s11367-008-0009-9.
[44]  Johnsen, F.M.; L?kke, S. Review of criteria for evaluating LCA weighting methods. Int. J. Life Cycle Ass. 2012, 1–10.
[45]  Yellishetty, M.; Ranjith, P.G.; Tharumarajah, A.; Bhosale, S. Life cycle assessment in the minerals and metals sector: A critical review of selected issues and challenges. Int. J. Life Cycle Ass. 2009, 14, 257–267, doi:10.1007/s11367-009-0060-1.
[46]  Finnveden, G.; Eldh, P.; Johansson, J. Weighting in LCA based on ecotaxes: Development of a mid-point method and experiences from case studies. Int. J. Life Cycle Ass. 2006, 11, 81–88, doi:10.1065/lca2006.04.015.
[47]  Koffler, C.; Schebek, L.; Krinke, S. Applying voting rules to panel-based decision making in LCA. Int. J. Life Cycle Ass. 2008, 13, 456–467, doi:10.1007/s11367-008-0019-7.
[48]  Finnveden, G.; Hofstetter, P.; Bare, J.; Basson, L.; Ciroth, A.; Mettier, T.; Sepp?l?, J.; Johansson, J.; Norris, G. Normalisation, grouping, and weighting in life cycle impact assessment. In Life Cycle Impact Assessment: Striving Towards Best Practice. Society of Environmental Toxicology and Chemistry (SETAC); de Haes, H.A.U., Ed.; Pensacola, FL, USA, 2002.
[49]  Tipa, G.; Teirney, L. Cultural Health Index for Streams and Waterways: A tool for nationwide use. A report prepared for the Ministry for the Environment (No. 710); Ministry for the Environment: Wellington, New Zealand, 2006.
[50]  Rotarangi, S.; Thorp, G. Can profitable forest management incorporate community values? New Zeal. J. For. 2009, 54, 13–16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133