全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Impact of Climate, CO2 and Population on Regional Food and Water Resources in the 2050s

DOI: 10.3390/su5052129

Keywords: climate, carbon dioxide, CO2 fertilisation, food security, water resources, population change, Africa

Full-Text   Cite this paper   Add to My Lib

Abstract:

Population growth and climate change are likely to impact upon food and water availability over the coming decades. In this study we use an ensemble of climate simulations to project the implications of both these drivers on regional changes in food and water. This study highlights the dominant effect of population growth on per capita resource allocation over climate induced changes in our model projections. We find a strong signal for crop yield reductions due to climate change by the 2050s in the absence of CO 2 fertilisation effects. However, when these additional processes are included this trend is reversed. The impacts of climate on water resources are more uncertain. Overall, we find reductions in the global population living in water stressed conditions due to the combined effects of climate and CO 2. Africa is a key region where projected decreases in runoff and crop productivity from climate change alone are potentially reversed when CO 2 fertilisation effects are included, but this is highly uncertain. Plant physiological response to increasing atmospheric CO 2 is a major driver of the changes in crop productivity and water availability in this study; it is poorly constrained by observations and is thus a critical uncertainty.

References

[1]  Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W., III. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972.
[2]  Beddington, J.R.; Asaduzzaman, M.; Clark, M.E.; Bremauntz, A.F.; Guillou, M.D.; Howlett, D.J.B.; Jahn, M.M.; Lin, E.; Mamo, T.; Negra, C.; et al. What next for agriculture after durban? Science 2012, 335, 289–290.
[3]  Molden, D.; Oweis, T.Y.; Steduto, P.; Kijne, J.W.; Hanjra, M.A.; Bindraban, P.S.; Bouman, B.A.M.; Cook, S.; Erenstein, O.; Farahani, H.; et al. Pathways for increasing agricultural water productivity. In Agriculture, Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Molden, D., Ed.; International Water Management Institute: London, UK, 2007.
[4]  Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377, doi:10.1016/j.foodpol.2010.05.006.
[5]  Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manage 2010, 97, 528–535, doi:10.1016/j.agwat.2009.03.023.
[6]  Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138, doi:10.1038/367133a0.
[7]  World Water Assessment Programme. The United Nations World Water Development Report 3: Water in a Changing World; UNESCO: London, UK, 2009.
[8]  Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.; Garcia-Herrera, R. The Hot summer of 2010: Redrawing the Temperature record map of europe. Science 2011, 332, 220–224, doi:10.1126/science.1201224.
[9]  Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708, doi:10.1073/pnas.0701976104.
[10]  Pope, V.D.; Gallani, M.L.; Rowntree, P.R.; Stratton, R.A. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim. Dynam. 2000, 16, 123–146, doi:10.1007/s003820050009.
[11]  Gordon, C.; Cooper, C.; Senior, C.A.; Banks, H.; Gregory, J.M.; Johns, T.C.; Mitchell, J.F.B.; Wood, R.A. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 2000, 16, 147–168, doi:10.1007/s003820050010.
[12]  Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans. R. Soc. B 2010, 365, 2973–2989, doi:10.1098/rstb.2010.0158.
[13]  Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. IPCC Special Report on Emissions Scenarios; Cambridge University Press: Cambridge, UK, 2006.
[14]  Collins, M.; Booth, B.B.B.; Harris, G.R.; Murphy, J.M.; Sexton, D.M.H.; Webb, M.J. Towards quantifying uncertainty in transient climate change. Clim. Dynam. 2006, 27, 127–147, doi:10.1007/s00382-006-0121-0.
[15]  Lutz, W.; Sanderson, W.; Scherbov, S. The coming acceleration of global population ageing. Nature 2008, 451, 716–719, doi:10.1038/nature06516.
[16]  Lutz, W.; Sanderson, W.; Scherbov, S. IIASA’s 2007 Probabilistic World Population Projections, IIASA World Population Program Online Data Base of Results. Available online: http://www.iiasa.ac.at/Research/POP/proj07/index.html?sb=5/ (accessed on 1 February 2012).
[17]  Van Vuuren, D.P.; Lucas, P.L.; Hilderink, H. Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels. Global Environ. Change 2007, 17, 114–130, doi:10.1016/j.gloenvcha.2006.04.004.
[18]  Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, doi:10.1029/2007GB002952.
[19]  Murphy, J.M.; Sexton, D.M.H.; Barnett, D.N.; Jones, G.S.; Webb, M.J.; Collins, M. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 2004, 430, 768–772.
[20]  Collins, M.C.M.; Booth, B.B.; Bhaskaran, B.; Harris, G.R.; Murphy, J.M.; Sexton, D.M.H.; Webb, M.J. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim. Dynam. 2011, 36, 1737–1766, doi:10.1007/s00382-010-0808-0.
[21]  Wiltshire, A.J.; Gornall, J.; Booth, B.B.B.; Dennis, E.; Falloon, P.; Kay, G.; McNeall, D.; Betts, R.A. The importance of population, climate change and CO2 plant physiological forcing in determining future global water stress. Global Environ. Change 2013. submitted.
[22]  Field, C.B.; Jackson, R.B.; Mooney, H.A. Stomatal responses to increased CO2—Implications from the plant to the global-scale. Plant Cell Environ. 1995, 18, 1214–1225, doi:10.1111/j.1365-3040.1995.tb00630.x.
[23]  Jarvis, P.G.; McNaughton, K.G. Stomatal control of transpiration—Scaling up from leaf to region. Adv. Ecol. Res. 1986, 15, 1–49, doi:10.1016/S0065-2504(08)60119-1.
[24]  Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 2007, 143, 134–144.
[25]  Hungate, B.A.; Reichstein, M.; Dijkstra, P.; Johnson, D.; Hymus, G.; Tenhunen, J.D.; Hinkle, C.R.; Drake, B.G. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Glob. Change Biol. 2002, 8, 289–298, doi:10.1046/j.1365-2486.2002.00468.x.
[26]  Li, J.H.; Erickson, J.E.; Peresta, G.; Drake, B.G. Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment. Glob. Change Biol. 2010, 16, 234–245, doi:10.1111/j.1365-2486.2009.01941.x.
[27]  Tubiello, F.N.; Amthor, J.S.; Boote, K.J.; Donatelli, M.; Easterling, W.; Fischer, G.; Gifford, R.M.; Howden, M.; Reilly, J.; Rosenzweig, C. Crop response to elevated CO2 and world food supply—A comment on “Food for Thought...” by Long et al., Science 312: 1918–1921, 2006. Eur. J. Agron. 2007, 26, 215–223.
[28]  Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol. 2005, 165, 351–371, doi:10.1111/j.1469-8137.2004.01224.x.
[29]  Cox, P.M.; Huntingford, C.; Harding, R.J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 1998, 213, 79–94, doi:10.1016/S0022-1694(98)00203-0.
[30]  Oki, T.; Sud, U.C. Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact. 1998, 2, 1–36.
[31]  Fekete, B.M.; Vorosmarty, C.J.; Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 2002, doi:10.1029/1999GB001254.
[32]  Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R. Soc. B Biol. Sci. 1997, 353, 929–936, doi:10.1098/rstb.1997.0072.
[33]  Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches. Nat. Resour. Forum 1989, 13, 258–267, doi:10.1111/j.1477-8947.1989.tb00348.x.
[34]  Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140, doi:10.1126/science.1100217.
[35]  Harding, R.J.; Blyth, E.M.; Tuinenberg, O.; Wiltshire, A.J. Land atmosphere feedbacks and their role in the water resources of the Ganges basin. Sci. Total Environ. 2013. in press.
[36]  Pijanowski, B.; Moore, N.; Mauree, D.; Niyogi, D. Evaluating error propagation in coupled land-atmosphere models. Earth Interact. 2011, 15, 1–25.
[37]  Clark, D.B.; Mercado, L.M.; Sitch, S.; Jones, C.D.; Gedney, N.; Best, M.J.; Pryor, M.; Rooney, G.G.; Essery, R.L.H.; Blyth, E.; et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 2011, 4, 701–722, doi:10.5194/gmd-4-701-2011.
[38]  Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.L.H.; Menard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699, doi:10.5194/gmd-4-677-2011.
[39]  Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; ?sterle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848, doi:10.1175/2011JHM1369.1.
[40]  Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12945, doi:10.1073/pnas.0704243104.
[41]  Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human appropriation of the products of photosynthesis. Bioscience 1986, 36, 368–373, doi:10.2307/1310258.
[42]  Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873, doi:10.1038/nature02619.
[43]  FAO. Food Balance Sheets—FAOSTAT. Available online: http://faostat.fao.org/default.aspx/ (accessed on 1 December 2012).
[44]  Rakotoarisoa, M.A.; Lafrate, M.; Paschali, M. Why Has Africa Become a Net Food Importer? Explaining Africa Agricultural and Food Trade Deficits; Trade and Markets Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2011.
[45]  Islam, M.S.; Oki, T.; Kanae, S.; Hanasaki, N.; Agata, Y.; Yoshimura, K. A grid-based assessment of global water scarcity including virtual water trading. Water Resour. Manage 2007, 21, 19–33.
[46]  Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environ. Change 2004, 14, 31–52, doi:10.1016/j.gloenvcha.2003.10.006.
[47]  Revenga, C.; Brunner, J.; Henniger, N.; Kassem, K.; Payne, R. Pilot Analysis of Global Ecosystems: Freshwater Systems; World Resources Institute: Washington, DC, USA, 2000.
[48]  Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, doi:10.1088/1748-9326/5/3/034006.
[49]  Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockstrom, J. Greening the global water system. J. Hydrol. 2010, 384, 177–186, doi:10.1016/j.jhydrol.2009.06.026.
[50]  Gornall, J.L.; Betts, R.A.; Wiltshire, A.J. Anthropogenic Drivers of Environmental Change. In Handbook of Environmental Change; Matthews, J., Ed.; SAGE: London, UK, 2012.
[51]  Beddington, J. Food security: Contributions from science to a new and greener revolution. Philos. Trans. R. Soc. B 2010, 365, 61–71, doi:10.1098/rstb.2009.0201.
[52]  Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818, doi:10.1126/science.1185383.
[53]  Godfray, H.C.J.; Pretty, J.; Thomas, S.M.; Warham, E.J.; Beddington, J.R. Linking policy on climate and food. Science 2011, 331, 1013–1014.
[54]  Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845, doi:10.1126/science.1060391.
[55]  Burke, M.B.; Lobell, D.B.; Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environ. Change 2009, 19, 317–325, doi:10.1016/j.gloenvcha.2009.04.003.
[56]  Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants face the future. Annu. Rev. Plant Biol. 2004, 55, 591–628, doi:10.1146/annurev.arplant.55.031903.141610.
[57]  Gifford, R.M. The CO2 fertilising effect—Does it occur in the real world? The International Free Air CO2 Enrichment (FACE) Workshop: Short- and long-term effects of elevated atmospheric CO2 on managed ecosystems, Ascona, Switzerland, March 2004. New Phytol. 2004, 163, 221–225, doi:10.1111/j.1469-8137.2004.01133.x.
[58]  Sinclair, T.R.; Pinter, P.J.; Kimball, B.A.; Adamsen, F.J.; LaMorte, R.L.; Wall, G.W.; Hunsaker, D.J.; Adam, N.; Brooks, T.J.; Garcia, R.L.; et al. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits. Agric. Ecosyst. Environ. 2000, 79, 53–60, doi:10.1016/S0167-8809(99)00146-2.
[59]  Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Change 2004, 14, 53–67, doi:10.1016/j.gloenvcha.2003.10.008.
[60]  Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nosberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921, doi:10.1126/science.1114722.
[61]  Fischer, G.; Shah, M.; Tubiello, F.N.; van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Tran. R. Soc. B 2005, 360, 2067–2083, doi:10.1098/rstb.2005.1744.
[62]  Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288, doi:10.1126/science.289.5477.284.
[63]  Brown, M.E.; Funk, C.C. Climate—Food security under climate change. Science 2008, 319, 580–581, doi:10.1126/science.1154102.
[64]  Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 2007, 74, 1083–1107, doi:10.1016/j.techfore.2006.05.021.
[65]  Betts, R.A.; Falloon, P.D.; Gornall, J.; Kaye, N.; Wiltshire, A.; Wheeler, T. Climate Change and Food Security. In Climate Sense; Asrar, G.R., Ed.; Tudor Rose: Leicester, UK, 2009.
[66]  IPCC. Climate Change 2007: Synthesis Report; Cambridge University Press: Cambridge, UK, 2007.
[67]  Betts, R.A.; Arnell, N.W.; Boorman, P.M.; Cornell, S.E.; House, J.I.; Kaye, N.R.; McCarthy, M.P.; McNeall, D.J.; Sanderson, M.G.; Wiltshire, A.J. Climate change impacts and adaptation: An earth system view. In Understanding the Earth System; Cornell, S.E., Prentice, I.C., House, J.I., Downy, C.J., Eds.; Cambridge University Press: Cambridge, UK, 2012; p. 296.
[68]  Schmittner, A.; Urban, N.M.; Shakun, J.D.; Mahowald, N.M.; Clark, P.U.; Bartlein, P.J.; Mix, A.C.; Rosell-Mele, A. Climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science 2011, 334, 1385–1388, doi:10.1126/science.1203513.
[69]  Sitch, S.; Cox, P.M.; Collins, W.J.; Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 2007, 448, 791–794.
[70]  Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; K?rcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, doi:10.1002/jgrd.50171.
[71]  Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 2012, 335, 183–189.
[72]  Kopp, R.E.; Mauzerall, D.L. Assessing the climatic benefits of black carbon mitigation. Proc. Natl. Acad. Sci. USA 2010, 107, 11703–11708, doi:10.1073/pnas.0909605107.
[73]  UNFCCC. Decision 2/CP.15 Copenhagen Accord, 2009. Available online: http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf (accessed on 1 February 2012).
[74]  Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 2009, doi:10.1029/2009GL039209.
[75]  Pongratz, J.; Lobell, D.B.; Cao, L.; Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Change 2012, 2, 101–105.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133